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Conduct disorder symptomatology is associated with an altered
functional connectome in a large national youth sample
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Abstract

Conduct disorder (CD), characterized by youth antisocial behavior, is associated with a variety of neurocognitive impairments. However,
questions remain regarding the neural underpinnings of these impairments. To investigate novel neural mechanisms that may support these
neurocognitive abnormalities, the present study applied a graph analysis to resting-state functional magnetic resonance imaging (fMRI) data
collected from a national sample of 4,781 youth, ages 9–10, who participated in the baseline session of the Adolescent Brain Cognitive
DevelopmentSM Study (ABCD Study®). Analyses were then conducted to examine the relationships among levels of CD symptomatology,
metrics of global topology, node-level metrics for subcortical structures, and performance on neurocognitive assessments. Youth higher on CD
displayed higher global clustering (β = .039, 95% CIcorrected [.0027 .0771]), but lower Degreesubcortical (β =−.052, 95% CIcorrected [−.0916
−.0152]). Youth higher on CD had worse performance on a general neurocognitive assessment (β =−.104, 95% CI [−.1328 −.0763]) and
an emotion recognition memory assessment (β =−.061, 95% CI [−.0919 −.0290]). Finally, global clustering mediated the relationship between
CD and general neurocognitive functioning (indirect β =−.002, 95% CI [−.0044 −.0002]), and Degreesubcortical mediated the relationship
between CD and emotion recognition memory performance (indirect β =−.002, 95% CI [−.0046 −.0005]). CD appears associated with
neuro-topological abnormalities and these abnormalities may represent neural mechanisms supporting CD-related neurocognitive disruptions.
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Conduct disorder (CD) is a developmental disorder associated
with engagement in aggressive, rule-breaking, destructive, and
deceitful behaviors during childhood and/or adolescence. CD is
associated with poor academic achievement, employment out-
comes, and peer and family relationships (Brown, Jaffe,
Silverstein, & Magee, 1991; Moffitt, 1993; Offord & Bennett,
1994; Woolfenden, Williams, & Peat, 2002). One well-studied fac-
tor related to the poorer psychosocial outcomes in youth with CD
is the presence of neurocognitive difficulties (Blair, Leibenluft, &
Pine, 2014; Moffitt, 1993; Nigg & Huang-Pollock, 2003; Ogilvie,
Stewart, Chan, & Shum, 2011; Teichner & Golden, 2000; Viding
& Jones, 2008).

Across many empirical studies, review papers, and meta-
analyses, CD symptomatology reliably associates with neurocogni-
tive difficulties in executive functioning (e.g., response inhibition,
working memory, etc.; Frick, 2012; Moffitt, 1993; Morgan &
Lilienfeld, 2000; Ogilvie et al., 2011), decision-making (see Blair
et al., 2014 for review), verbal abilities, and general intellect
(see Moffitt, 1993 for review). For example, within the domain
of executive functioning, studies show that youth with CD struggle

to inhibit prepotent responses, particularly in potentially rewarding
contexts (Estrada, Tillem, Stuppy-Sullivan, & Baskin-Sommers,
2019; Fairchild et al., 2009; Hobson, Scott, & Rubia, 2011;
Schoorl, van Rijn, de Wied, Van Goozen, & Swaab, 2018). As
another example, research across decision-making paradigms
demonstrates that youth with CD exhibit deficits in the
prediction-error response, failures in contingency learning, and
increased rates of risky decision-making (see Blair et al., 2014;
Estrada et al., 2019 for reviews). Given the multifaceted neurocog-
nitive abnormalities documented in youth with CD, some
researchers suggest that broad, domain-general, neurocognitive
disruptions present in youth with CD may play a role in the main-
tenance of their antisocial behavior and result in psychosocial
problems that persist throughout development (Moffitt, 1993).
Regardless of whether researchers focus on domain-specific neuro-
cognitive dysfunction in CD or on domain-general neurocognitive
dysfunction in CD, there is consensus that these CD-related neuro-
cognitive deficits are rooted in aberrant neural structure, function-
ing, and/or connectivity (Blair et al., 2014).

Neuroimaging research demonstrates that youth with CD dis-
play several functional and structural abnormalities. CD correlates
with functional and structural differences in the amygdala, hippo-
campus, caudate, orbital frontal cortex, anterior cingulate cortex,
superior temporal gyrus, prefrontal cortex, insula, and fusiform
gyrus (Baker, Clanton, Rogers, & De Brito, 2015; Noordermeer,
Luman, & Oosterlaan, 2016; Rogers & De Brito, 2016; Waller
et al., 2020). Beyond these region-specific differences, CD relates
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to atypical neural communication between various neural struc-
tures. For example, in resting-state functional magnetic resonance
imaging (rs-fMRI) studies, youth with CD show reduced cortical–
subcortical functional connectivity (e.g., between the amygdala
and prefrontal cortex; Finger et al., 2012) and reduced functional
connectivity between structures within the default network (e.g.,
between the precuneus and temporalparietal junction;
Broulidakis et al., 2016; Lu et al., 2015; Zhou et al., 2016), but
increased internetwork connectivity to frontoparietal network
structures (e.g., between the frontoparietal network and the infe-
rior frontal gyri; Aghajani et al., 2016; Cohn et al., 2015).
Similarly, in diffusion tensor imaging (DTI) studies, youth with
CD display abnormalities in the microstructural integrity of
white matter tracks connecting cortical and subcortical structures
(Passamonti et al., 2012), frontal lobe and temporal lobe structures
(Haney-Caron, Caprihan, & Stevens, 2014; Sarkar et al., 2013), and
cortical hemispheres (Menks et al., 2017; Zhang et al., 2014). The
neural abnormalities documented in youth with CD are clearly
complex and widespread, impacting multiple levels of functioning
throughout the entire brain, often in mixed directions (i.e.,
decreased connectivity between some structures but increased con-
nectivity between others). This type of complexity presents chal-
lenges when attempting to unpack how these various neural
abnormalities may interact with each other to ultimately produce
the aberrant neurocognitive profile associated with CD.

Graph theory: global metrics

Recent advances in the application of graph theory provide a new
avenue for researchers to disentangle these types of complex,
widespread disruptions (Bullmore & Sporns, 2009; Stam &
Reijneveld, 2007). Rather than looking at the structure or respon-
sivity of specific neural structures, or even the strength of neural
connectivity between pairs of neural structures, graph analysis
allows for a higher-level examination of the overall organization,
or topology, of entire neural networks or even the brain as a
whole. More specifically, graph analysis takes connectivity data
from every single possible set of connections throughout an entire
network, or throughout the entire brain, and utilizes that data to
generate a “graph.” These graphs consist of a series of “nodes”
(i.e., parts of the graph which represent a specific neural structure
or set of structures averaged together) connected by various
“edges” (i.e., lines directly linking different nodes meant to repre-
sent “true” connections present in the network/brain) and can act
as a visual and mathematical representation of the topology of
neural information flow throughout the entire network/brain.
Moreover, researchers can extract quantifiable metrics from
these graphs which reflect different global properties of neural
information processing occurring within that network, as a
whole, such as the global efficiency and/or robustness to disrup-
tion of the neural communication occurring within that network.
These types of global graph network properties are thought to
play a critical role in effective neurocognitive functioning, with
more optimal (e.g., more efficient and/or robust) network topol-
ogies supporting more optimal neurocognitive functioning (e.g.,
better executive functioning and/or higher general intellect;
Bullmore & Sporns, 2009; Hadley et al., 2016; Langer et al.,
2012; Liu et al., 2008; Neubauer & Fink, 2009; Schoonheim
et al., 2014; Shu et al., 2016; Stam & Reijneveld, 2007; Suprano
et al., 2019; Tewarie et al., 2014; van den Heuvel, Mandl, Stam,
Kahn, & Hulshoff Pol, 2010).

To date, however, only two studies utilize graph analytic
approaches to examine neural topologies in CD. Jiang et al.
(2016) find that CD is associated with less efficiently organized
structural topology at a whole-brain level. By contrast, Lu,
Zhou, Zhang, Wang, and Yuan (2017) report that CD is not sig-
nificantly related to global abnormalities in the functional topol-
ogy of the brain. While both of these studies provide invaluable
insight into how CD may be related to alterations in the global
topology of the brain, as a whole, they also have several limitations
that impede their ability to fully explore the relationships among
CD, global topology, and neurocognitive functioning.

First, and most critically, neither study examines behavioral
metrics of neurocognitive functioning (e.g., executive functioning
task or general intellect assessment performance). Accordingly,
neither study can fully and specifically explore the relationships
among CD, global neural topology, and direct behavioral mea-
sures of neurocognitive functioning, leaving any potential expla-
nations for how CD-related alterations in global neural topology
relate to neurocognitive functioning in CD purely speculative.
Second, the sample size in Lu et al. (2017) is small (n = 18 adoles-
cents with CD), raising the possibility that the reported null effect
reflects a lack of statistical power. Third, Jiang et al. (2016) use an
indirect measure of structural connectivity (gray matter thickness
correlations), which means that the actual relationship between
CD and alterations in the structural topology of white matter
tracks (e.g., as measured by DTI) is unmeasured. Finally, since
these studies are limited to examining adolescent samples (e.g.,
ages 13−17), the relationship between CD and global neural
topology earlier in childhood (e.g., prior to age 13) remains
unexamined.

Given these limitations in the prior research, the first set of
aims for the current study are to use rs-fMRI data taken from a
large national sample of children (ages 9−10) to: (a) assess
whether CD is associated with global abnormalities in neural
topology at a whole-brain level and (b) directly evaluate whether
global abnormalities relate to neurocognitive impairments associ-
ated with CD. Given that CD is related to neurocognitive disrup-
tions across multiple broad domains of neurocognitive
functioning, including general intellect (Blair et al., 2014;
Moffitt, 1993; Nigg & Huang-Pollock, 2003; Ogilvie et al., 2011;
Teichner & Golden, 2000; Viding & Jones, 2008), and it remains
unclear which specific domain of neurocognitive functioning, if
any, may be central to CD, the current study evaluates whether
CD-related alterations in whole-brain neural topology may medi-
ate the relationship between CD and a domain-general measure of
neurocognitive functioning.

Graph theory: node metrics

Graph analyses are not limited to these types of global analyses
evaluating higher-level properties of a network or brain as a
whole. Graph analyses also can examine how specific neural struc-
tures, or nodes, differentially influence the flow of information
throughout an entire network/brain. These types of node-level
analyses allow researchers to evaluate whether specific parts of
the brain (i.e., specific nodes) may have different characteristics
within a network across individuals or groups. For example,
there may be individual- or group-level differences in the hubness
of a node (i.e., the number of direct connections between a spe-
cific node and other nodes), the centrality of a node (i.e., how cen-
trally located a specific node is in the global flow of information
throughout a network/brain), and/or the local efficiency of a node
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(i.e., how quickly and effectively a specific node may be able to
communicate with other nodes in its immediate “neighborhood”).
Moreover, depending upon the specific node in question, and the
neurocognitive functions that node is believed to support, alterations
in these node-level properties may have serious implications for neu-
rocognitive functioning. For instance, it has been theorized that, if
subcortical structures (e.g., the amygdala, hippocampus, caudate,
etc.) are less centrally located in the flow of information throughout
the brain, then neurocognitive processes which rely on those struc-
tures (e.g., affective responding, memory, and reward and punish-
ment processing; Baas, Aleman, & Kahn, 2004; Eichenbaum, 2001;
Knutson & Cooper, 2005) may be less able to influence various
aspects of cognition (e.g., decision-making; see Tillem et al., 2019).

To date, research examining node-level analyses in CD is lim-
ited. However, two findings suggest that node-level alterations in
the hubness or centrality of subcortical structures, in particular,
may be relevant for CD. First, while Lu et al. (2017) reported
that CD is not associated with node-level differences, they also
report that traits relevant to CD (e.g., trait impulsivity) are related
to differences in the hubness of subcortical structures. More spe-
cifically, they show that in youth higher on trait impulsivity, the
amygdala, a subcortical structure critical for affective responding
(Baas et al., 2004), is less directly connected to other parts of the
brain, and, therefore, may act as less of a “hub” of information
flow in these youth. Second, Lindner et al. (2018) posited that
the hippocampus, a subcortical structure critical for memory
encoding and retrieval (Eichenbaum, 2001), may play a less cen-
tral role in global information processing in older adolescent and
young adult females higher on “social deviance” (defined by trait
impulsivity and chronic, lifetime engagement in antisocial behav-
ior, including CD symptomatology). These findings, combined
with extensive prior work showing abnormalities in youth with
CD in subcortical functioning, subcortical structure, cortical–sub-
cortical functional connectivity, and cortical–subcortical struc-
tural connectivity (Baker et al., 2015; Dotterer et al., 2020;
Finger et al., 2012; Noordermeer et al., 2016; Passamonti et al.,
2012; Rogers & De Brito, 2016; Waller et al., 2020), highlight sub-
cortical structures as regions of interest in youth with CD.

Moreover, prior theoretical accounts of violent antisocial
behavior, in both youth and adult populations, focus on the poten-
tial role of cortical–subcortical communication. For example, the
violence inhibition model (VIM; Blair, 1995)1 posits that neurotyp-
ical individuals have difficulty engaging in aggressive and antisocial
behavior against other agents due to an inhibitory mechanism,
mediated by amygdala–prefrontal circuitry, which is automatically
activated in response to another agent’s distress cues (e.g., another
agent’s fearful facial expression, crying, etc.). For individuals who
engage in aggressive and antisocial behavior, such as youth with
CD, it is possible that this amygdala–prefrontal communication is
disrupted, impairing this inhibitory mechanism, and allowing
these individuals to more easily engage in violent antisocial behavior
even in the face of another agent’s distress cues.

Despite work highlighting subcortical functioning and connec-
tivity as a potential mechanistic factor in youth CD, the link
between subcortical node-level abnormalities and disruptions in rel-
evant neurocognitive functions (e.g., emotion, memory, etc.) has not
been investigated directly in either neurotypical or CD samples.
Accordingly, the second set of aims for the current study are to:

(a) examine the relationship between CD and node-level abnormal-
ities in subcortical structures, and (b) evaluate whether node-level
abnormalities relate to specific neurocognitive functions believed to
rely on subcortical structures. Since abnormalities in encoding,
decoding, and/or responding to other agent’s distress cues are rele-
vant for antisocial behavior (VIM; Blair, 1995) and subcortical struc-
tures, such as the amygdala and hippocampus, play central roles in
affective responding and memory, the current study examines
whether any CD-related node-level abnormalities for subcortical
structures mediate the relationship between CD and performance
on an emotion recognition memory task (Baas et al., 2004;
Eichenbaum, 2001; Keightley, Chiew, Anderson, & Grady, 2011).

The present study

In the present study, we conducted an unweighted, undirected
graph analysis on rs-fMRI connectivity metrics included in the
Adolescent Brain Cognitive DevelopmentSM Study (ABCD
Study®) baseline data (release 2.0.1; DOI 10.15154/1504041),
extracting both global and node-level graph theory metrics.
Then, we conducted two sets of analyses to examine the relation-
ships among CD symptomatology, graph theory metrics of neural
topology (global and node-level metrics), and behavioral mea-
sures of neurocognitive functioning (domain-general neurocogni-
tive assessment and emotion recognition memory task). Together,
these analyses allowed us to determine whether CD was linked to
abnormalities in the topology of neural communication, and eval-
uate if these potential abnormalities mediated the relationship
between CD and neurocognitive functioning.

Method and Materials

Participants

Participants were children, ages 9−10 years old, who completed
the baseline session of the multisite ABCD Study. Details regard-
ing the sampling strategy, sample norms, and sample composition
previously have been described elsewhere (Garavan et al., 2018).
All study procedures were approved by a centralized institutional
review board at the University of California San Diego and/or by
each site’s institutional review board (Clark et al., 2018). Parents
provided signed informed consent and children provided written
assent prior to the study. For the present analyses, participants
were included if they: (a) had symptom-level CD data available
from their baseline session, (b) were not missing any demographic
data (e.g., age, sex, race, or data collection site), and (c) had valid
rs-fMRI data released from their baseline session that also passed
the ABCD Study overall MRI quality checks described by Hagler
et al. (2019). Based on these inclusion criteria, the initial sample
size was n = 5,615. Given the large number of ABCD Study families
with multiple children and/or twins that participated in the study,
siblings were overrepresented in the sample (Iacono et al., 2018).
To help control for any family-related effects, only one, randomly
selected, child per family was used in the current analyses, yielding
a sample of n = 4,781 (see Table 1 for demographics summary).

CD symptomatology

Kiddie schedule for affective disorders and schizophrenia for
school-age children (K-SADS-PL; Kaufman et al., 2013)
The K-SADS-PL is an evaluation of symptoms and diagnoses
related to Diagnostic and Statistical Manual of Mental Disorders,

1While much of the work stemming from VIM and related models has focused on
psychopathy and/or psychopathic traits, the original model addressed aggression and
antisociality more broadly.
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fifth edition (DSM-5 CD) criteria in children and adolescents
between the ages of 6 and 18. In the ABCD Study protocol, the
K-SADS-PL is computerized and self-administered by the parents
or primary caregivers of youth participants. Approximately 4.6%
(n = 219) of the current sample met criteria for a CD diagnosis,
which is consistent with the national prevalence rate of approxi-
mately 4.4% reported for young adolescents in the United States
(Merikangas et al., 2010). The current study used CD symptom
counts as a continuous measure of CD.

Neurocognitive measures

National Institutes of Health (NIH) Toolbox cognition battery
(Gershon, Wagster, et al., 2013)
The NIH Toolbox cognition battery is a battery of seven different
neurocognitive tasks, including: a list sorting task assessing work-
ing memory (Tulsky et al., 2014), a picture vocabulary task assess-
ing language and verbal abilities (Gershon et al., 2014), a Flanker
task assessing cognitive control and attention (Fan, McCandliss,
Sommer, Raz, & Posner, 2002), a dimensional change card sorting
task assessing cognitive flexibility (Zelazo, 2006), a pattern com-
parison task assessing visual processing speed (Carlozzi,
Beaumont, Tulsky, & Gershon, 2015; Carlozzi, Tulsky, Kail, &
Beaumont, 2013; Carlozzi et al., 2014), a picture sequence task
assessing episodic memory and visuospatial sequencing (Bauer
et al., 2013; Dikmen et al., 2014), and an oral reading task assess-
ing reading ability (Gershon, Slotkin, et al., 2013). The corrected,
total cognition summary T-score for this assessment battery was
used as our domain-general metric of neurocognitive functioning
as this score reflects a standardized measure of neurocognitive
functioning across components of cognition2,3 (Akshoomoff
et al., 2013).

Emotion recognition memory
After the MRI session, participants were presented with a total of
96 pictures of faces (i.e., happy faces, neutral faces, and fearful
faces) and pictures of places (Barch et al., 2013; Casey et al.,
2018). Forty-eight of these pictures were the same stimuli used
during an emotional n-back task completed earlier in the session
(for details see Casey et al., 2018; Cohen et al., 2016) and 48 pic-
tures were novel. Picture-type was evenly balanced (i.e., 12 pic-
tures per type) across old and new pictures. Participants were
asked to rate whether each picture was “old” or “new.” Given
our interest in a behavioral assessment of both emotion and
memory related processing, we used a sensitivity measure (d’; cal-
culated as: z(hit rate) – z(false alarms)), which accounts for false
alarm rates, for each of the different face-types presented in the
task as our metrics of emotion recognition memory.4

Additional details regarding all neurocognitive measures
administered during the baseline study session can be found in
previously published papers (see Barch et al., 2018; Casey et al.,
2018; and Luciana et al., 2018 for full details on all assessment
tools).

Imaging procedures and processing

For each participant, 15−20 min of rs-fMRI data was acquired.
Data acquisition occurred across 3−4 separate rs-fMRI sequences,
each of which was 5-minutes in duration. During each rs-fMRI
sequence participants were instructed to stay still and gaze at a
central fixation cross. Imaging parameters were harmonized
across all 21 data collection sites and scanner models. Details

Table 1. Sample characteristics and zero-order correlations (N = 4781)

Variable N Mean Std. Dev. Min Max

Correlations

1 2a 3b 4

1. Age 4,781 9.51 .51 8.00 11.00 – .01 −.04* −.05*

2. Sexa 4,781 – −.02 .08*

Male 2,343

Female 2,438

3. Raceb 4,781 – .09*

White 2,483

Black 713

Hispanic 999

Other 586

4. CD symptomatology 4,781 .30 .80 .00 10.00 –

CD diagnosis 219

No CD diagnosis 4,562

aSpearman correlations were used to examine the effect of Sex (dichotomously-coded).
bSpearman correlations were used to examine the effect of Race (dichotomously-coded, white versus non-white).
*95% Bootstrapped CI does not contain 0.

2406 participants from the current sample were missing data for the fully corrected,
total cognition summary T-score from the NIH Toolbox cognition battery.

3Descriptive statistics and correlations for NIH Toolbox cognition battery individual
task and composite scores can be found in the Supplemental Materials (see Tables S1–
S3).

41,070 participants from the current sample were missing data for the emotion recog-
nition memory task. However, CD symptomatology levels did not systematically differ
between participants missing emotion recognition memory task data and those who com-
pleted the task (see Supplemental Materials for full details).
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on image acquisition, rs-fMRI image preprocessing, quality con-
trol, motion correction/censoring, and connectivity analysis can
be found elsewhere (see Casey et al., 2018; Hagler et al., 2019).

Rs-fMRI connectivity analysis and node identification
Rs-fMRI connectivity metrics were calculated by the ABCD Study
Data Analysis, Informatics and Resources Center (DAIRC) using
methods detailed in Hagler et al. (2019). Briefly, Hagler et al.
(2019) performed a region of interest (ROI) to ROI connectivity
analysis between all parcels defined by the Gordon et al. (2016)
atlas. Following this initial connectivity analysis, Hagler et al.
(2019) averaged the connectivity measures across each ROI within
each major neural network (i.e., averaging connectivity measures
across ROIs within the: default, dorsal attention, frontoparietal,
salience, ventral attention, cingulo-opercular, cingulo-parietal,
visual, auditory, retrosplenial-temporal, sensorimotorhand,
sensorimotormouth, and “other” networks), producing a single
connectivity metric for each potential between-network connec-
tion (e.g., default to dorsal attention, default to frontoparietal,
dorsal attention to frontoparietal, etc.), for each participant.

In addition to this cortical network connectivity analysis,
Hagler et al. (2019) preformed a connectivity analysis examining
cortical network connectivity to various subcortical structures
(specifically, the right and left amygdala, hippocampus, caudate,
putamen, pallidum, thalamus, ventral diencephalon, nucleus
accumbens, cerebellum, and brainstem). Similar to the cortical–
cortical connectivity analysis, Hagler et al. (2019) then averaged
connectivity measures across ROIs within each cortical network,
and examined how each cortical network, as a whole, was con-
nected with each of the subcortical ROIs (e.g., default to right
amygdala, default to left amygdala, default to right hippocampus,
etc.). These averaged, network-level measures (for both the corti-
cal–cortical and cortical–subcortical connectivity analyses) were
provided in the ABCD Study 2.0.1 data release.

In the current study, we used the available connectivity metrics
from the cortical–cortical connectivity analysis to generate an initial
13 × 13 connectivity matrix where each matrix vector (or node) rep-
resented a cortical network. In addition, given our interest in corti-
cal–subcortical communication, we averaged the connectivity data
across each of the subcortical structures (see also Tillem et al.,
2019), producing a single cortical–subcortical connectivity measure
for each cortical network (e.g., default to subcortical, dorsal atten-
tion to subcortical, frontoparietal to subcortical, etc.). This allowed
us to generate a 14 × 14 connectivity matrix for each participant,
which, in turn, allowed us to generate graphs with 14 nodes in
the subsequent graph analyses (i.e., graphs with one node for
each of the 13 cortical networks, and a subcortical node).

Graph analysis
All graph analyses were completed in Matlab (version 2018b),
using a combination of the Brain Connectivity Toolbox
(Rubinov & Sporns, 2010), the MIT graph toolbox (http://strate-
gic.mit.edu/downloads.php?page=matlab_networks), and native
Matlab functions. To ensure all graphs were fully connected, a
minimum spanning tree analysis using the Kruskal algorithm
(Kruskal, 1956) was implemented to generate an initial fully con-
nected subgraph for each participant. Following this initial sub-
graph generation, connections were added to each subgraph at
proportional thresholds of .01 to .40 (i.e., from the strongest 1%
of all possible connections being included in the graph, to the
strongest 40% of all possible connections being included in the
graph) at .01 step intervals, to generate 40 unweighted, undirected

graphs of differing levels of sparsity per participant. Our various
graph metrics of interest (see Table 2) were then extracted from
each of these thresholded graphs for each participant. To help
ensure that our graph metrics accurately reflected neural topology
across different levels of sparsity, the area under the curve (AUC)
was calculated for each graph metric across sparsity levels
(Ginestet, Nichols, Bullmore, & Simmons, 2011; Hosseini,
Hoeft, & Kesler, 2012), producing one AUC value, per metric,
per participant. Following recent research in graph analysis, all
AUC graph metrics were then natural log transformed prior to
data analysis (Gonzalez et al., 2016; Smit, de Geus, Boersma,
Boomsma, & Stam, 2016; Tillem et al., 2019).

Data analysis

Global analysis
Separate linear regressions were run for each dependent variable
of interest (e.g., each of the global graph metrics’ AUCs [see
Table 2] and the NIH Toolbox cognition battery total cognition
score) with CD symptomatology (z-scored) as the primary predic-
tor of interest, controlling for sex (dichotomously coded, male vs.
female), race (dichotomously coded, white vs. non-white), age
(z-scored), and data collection site. Following these linear regres-
sion models, a mediation analysis was run (Hayes, 2013).

Since our primary predictor of interest (CD symptomatology)
was not normally distributed (Shapiro–Wilk test for normality,
p < .001), all effects were evaluated using confidence intervals
(CIs) derived from nonparametric resampling procedures (boot-
strapping) with 5,000 samples, which do not assume a normal
distribution. To correct for multiple comparisons in our analyses,
the CIs for the linear regression models were adjusted to match
Bonferroni-corrected p values (i.e., 1–[.05/number of compari-
sons] = CI range). Specifically, for the four regression analyses
examining global graph theory metrics, 98.75% bootstrapped
CIs were examined (1–[.05/4] = .9875).

Node-level analysis
Separate linear regressions were run for each of the node-level
metrics (see Table 2) for the subcortical node with CD sympto-
matology (z-scored) as the primary predictor of interest, control-
ling for sex (dichotomously coded, male vs. female), race
(dichotomously coded, white vs. non-white), age (z-scored), and
data collection site. Then, a three-level (neutral faces, happy
faces, and fearful faces) repeated-level general linear model was
performed with CD symptomatology (z-scored) included as a
continuous, between-subject factor of interest, controlling for
sex (dichotomously coded, male vs. female), race (dichotomously
coded, white vs. non-white), age (z-scored), and data collection
site. Finally, a mediation analysis was run (Hayes, 2013). As
with the global analysis, all effects were assessed via CI derived
from nonparametric resampling procedures (bootstrapping)
with 5,000 samples. For the three regression analyses examining
node-level graph theory metrics, 98.33% CIs were examined to
match Bonferroni-corrected p values (1–[.05/3] = .9833).

Results

Global analysis

Global graph analysis
Higher CD symptomatology was related to higher clustering coef-
ficients in the global graph analysis, F(5, 4,775) = 13.544, p < .001,
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β = .039, 98.75% CI [.0027 .0771], suggesting neural information
processing has greater overall functional segregation in youth
higher on CD symptomatology (see Figure 1). CD symptomatol-
ogy was not related to any other global graph analysis metrics
(Degreemax, F(5, 4,775) = 7.393, p < .001, β = .020, 98.75% CI
[−.0169 .0595]; BCmax, F(5, 4,775) = 10.696, p < .001, β = .025,
98.75% CI [−.0081 .0624]; global efficiency, F(5, 4,775) = 6.763,
p < .001, β = −.023, 98.75% CI [−.0582 .0125]).

Neurocognitive functioning
Consistent with prior research (Moffitt, 1993; Nigg &
Huang-Pollock, 2003; Teichner & Golden, 2000), higher CD
symptomatology was related to lower overall performance on
the NIH Toolbox cognition battery, as measured by the corrected
cognition total composite T-score, F(5, 4,369) = 16.644, p < .001,
β =−.104, 95% CI [−.1328 −.0763], suggesting youth higher on
CD symptomatology may exhibit a domain-general impairment
in neurocognitive functioning.

Mediation analysis
CD symptomatology was specified as the independent variable,
the NIH Toolbox total cognition score as the dependent variable,
and clustering coefficient as the mediator. Clustering coefficient
had a small but meaningful mediation effect on the relationship
between CD symptomatology and overall neurocognitive func-
tioning (indirect effect: β = −.002, 95% CI [−.0044 −.0002], pro-
portion mediated = 0.017; see Figure 2 for path coefficients).

Node-level analysis

Node-level metrics: subcortical
Higher CD symptomatology was related to lower Degreesubcortical,
F(5, 4,775) = 28.804, p < .001, β = −.052, 98.33% CI [−.0916
−.0152], suggesting that subcortical structures, collectively, exhibit
meaningfully fewer direct cortical connections, and therefore, may

Table 2. Descriptions of graph metrics

Metric Definition Description: Global analysis Description: Node-level analysis

Degree Number of connections to a single node. Graphs with higher Degreemax have larger
largest “hubs” (i.e., largest hubs with a
greater number of connections), and thus
may be able to more effectively integrate
information between nodes.

Nodes with higher Degree have more
connections and, therefore, may act as
more of a hub in the global flow of
information.

Betweenness
centrality (BC)

Number of shortest paths passing
through a specific node.

Graphs with higher BCmax have more
information traveling through a single,
centrally located hub, allowing for both
efficient communication and effective
information integration, but also
potentially leaving the graph vulnerable if
this central hub was damaged or
overloaded.

Nodes with higher BC have more
information passing through them (i.e.,
are more central) in the global flow of
information.

Efficiency Metrics related to either the average
inverse shortest path length across an
entire graph (efficiencyglobal) or the
inverse shortest path length of a specific
node within a smaller neighborhood
(efficiencylocal).

Graphs with higher efficiencyglobal may
require information to travel through
fewer connections to get from any node
to any other node in the network,
allowing for more efficient neural
communication.

Nodes with higher efficiencylocal may
require information to travel through
fewer connections to get to other nodes
in that neighborhood, allowing that
node to communicate more efficiently
within that area of the graph.

Clustering
coefficient

The fraction of nodes in a graph which
form triangular connections (i.e., the
fraction of nodes in a graph whose
neighbors are also interconnected with
each other).

Graphs with higher clustering coefficients
tend to exhibit higher degrees of
functional segregation and are more
robust to disruptions.

–

Figure 1. Youth higher on conduct disorder (CD) symptomatology exhibited higher
clustering coefficients in the global analysis. Figure 1 displays a regression line
depicting clustering coefficient from the global analysis as a function of CD sympto-
matology, controlling for age, sex, race, and data collection site. Error band repre-
sents one standard error.

Figure 2. Clustering coefficient partially mediates the relationship between conduct
disorder (CD) symptomatology and impairments in neurocognitive functioning.
Figure 2 displays the mediation model testing the relationships among CD sympto-
matology, global clustering coefficient, and total cognition score on the National
Institutes of Health (NIH) Toolbox cognition battery, controlling for age, sex, race,
and data collection site.
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act as less of a hub for information integration in youth with
higher CD symptomatology5 (see Figure 3). CD symptomatology
was not related to either BCsubcortical, F(5, 4,775) = 2.871, p = .014,
β = .036, 98.33% CI [−.0051 .0879] or local efficiency for subcort-
ical structures, F(5, 4,775) = 4.725, p < .001, β = .039, 98.33% CI
[−.0012 .0909].

Emotion recognition memory
There was a main effect of CD symptomatology on task perfor-
mance, F(1, 3,688) = 12.672, p < .001, β =−.061, 95% CI
[−.0919 −.0290] such that youth with higher CD symptomatology
displayed worse performance on the emotion recognition mem-
ory task across all face stimuli, regardless of the specific expression
being displayed in the stimulus (i.e., whether the face displayed a
happy, fearful, or affectively neutral expression). CD symptoma-
tology did not meaningfully interact with facial expression, F(2,
7,376) = 1.457, p = .233. Given these findings, an average of per-
formance across all three face stimuli types were used in the sub-
sequent mediation analysis.

Mediation analysis
For the mediation analysis, CD symptomatology was set as the
independent variable, face recognition memory performance as
the dependent variable, and Degreesubcortical as the mediator.
There was a small, but meaningful, indirect effect through
Degreesubcortical, β =−.002, 95% CI [−.0046 −.0005], proportion
mediated = .032, indicating that Degreesubcortical partially mediated
the relationship between CD symptomatology and emotion recog-
nition memory performance6 (see Figure 4 for path coefficients).

Supplemental analyses

Additional supplemental analyses were conducted to further
explore these findings (full details of which can be found in the
Supplemental Materials). Here, we briefly summarize these anal-
yses and findings.

First, an exploratory analysis was conducted to evaluate
whether CD symptomatology was related to node-level differences
for any of the cortical network nodes. However, this analysis yielded
all null results (see Supplemental Materials: Supplemental Analyses
and Results: Cortical Network Nodes, and Supplemental Materials,
Table S4).

Second, a grouped analysis was conducted to determine if the
current regression findings replicated at a diagnostic level (i.e., CD
diagnosis vs. controls). This analysis revealed that all the current
findings replicated at a diagnostic level (i.e., youth with CD com-
pared to controls showed the same effects as reported above in
youth higher on CD symptomatology); however, the relationship
between Degreesubcortical and CD diagnosis was only meaningful
prior to correcting for multiple comparisons (likely due to the
dramatic drop in power when going from the full sample, n =
4,781, to the subsample, n = 507, used in the grouped analysis;
see Supplemental Materials: Supplemental Analyses and Results:
CD Diagnosis).

Third, an exploratory analysis was conducted to evaluate
whether the effects of CD were moderated by participant’s sex.
The analysis demonstrated that the relationship between CD
and lower overall performance on the NIH Toolbox cognition
battery was moderated by sex, such that, while the effect was pre-
sent in both male and female participants, it was stronger in male
participants. No other meaningful moderation effects were found
(see Supplemental Materials: Supplemental Analyses and Results:
Demographic Interactions with CD: CD Symptomatology × Sex
Interactions).

Fourth, an exploratory analysis was conducted to evaluate
whether the effects of CD were moderated by race. This analysis
revealed a CD × Race interaction for local efficiencysubcortical,
where CD was associated with increased local efficiency for sub-
cortical structures, but only in non-white participants. No other
moderation effects were detected (see Supplemental Materials:
Supplemental Analyses and Results: Demographic Interactions
with CD: CD Symptomatology × Race Interactions).

Fifth, to evaluate the uniqueness of the current findings to CD
(over and above externalizing psychopathologies more generally),
exploratory analyses were conducted examining the relationships
between oppositional defiance disorder (ODD) and attention def-
icit/hyperactivity disorder (ADHD) symptomatology, respectively,
and our dependent variables of interest (e.g., global graph theory

Figure 3. Youth higher on conduct disorder (CD) symptomatology exhibit lower
Degreesubcortical in the node-level analysis. Figure 3 displays a regression line depict-
ing Degreesubcortical as a function of CD symptomatology, controlling for age, sex, race,
and data collection site. Error band represents one standard error.

Figure 4. Degreesubcortical partially mediates the relationship between conduct disor-
der (CD) symptomatology and impairments in emotion recognition memory. Figure 4
displays the mediation model testing the relationships among CD symptomatology,
Degreesubcortical, and performance on the emotion recognition memory task, control-
ling for age, sex, race, and data collection site.

5Since Degree is conceptually related to more traditional measures of functional con-
nectivity (i.e., estimated number of direct connections vs. estimated strength of possible
connections) this analysis was rerun including an overall subcortical–cortical connectivity
measure as a covariate in the model; however, this did not meaningfully change the
results, Degreesubcortical β =−.050, 98.33% CI [−.0802 −.0214].

6To ensure the Degreesubcortical mediation effect was not being driven by CD-related
differences in the strength of subcortical–cortical connectivity, the mediation analysis
was rerun with a basic subcortical–cortical connectivity measure as a simultaneous medi-
ator in the model; however, the results did not meaningfully change. The indirect path
through Degreesubcortical remained meaningful, β = −.002, 95% CI [−.0058 −.0004], pro-
portion mediated = .032, while neither the total indirect path nor the indirect path
through subcortical–cortical connectivity were meaningful.
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metrics, global neurocognitive functioning, node-level metrics for
subcortical structures, and emotion recognition memory task per-
formance). These analyses revealed that neither ODD nor ADHD
symptomatology were related to the graph theory metrics relevant
to CD (i.e., global clustering or Degreesubcortical). However, the
neurocognitive effects (i.e., worse performance on the NIH
Toolbox cognition battery and the emotion recognition memory
task) were shared across all three externalizing psychopathologies
(see Supplemental Materials: Supplemental Analyses and Results:
Uniqueness to CD).

Sixth, to help ensure that comorbidities among externalizing
psychopathologies were not confounding the current regression
findings, regression models for the four meaningful effects
reported above (i.e., the effect of CD on global clustering, NIH
Toolbox performance, Degreesubcortical, and emotion recognition
memory task performance) were rerun with ODD and ADHD
symptomatology as additional covariates. Including ODD and
ADHD symptomatology in these models did not meaningfully
alter the results, suggesting that the current findings are unlikely
to be confounded by comorbid externalizing psychopathologies
(see Supplemental Materials: Supplemental Analyses and
Results: Comorbidities).

Finally, to help ensure the current regression findings were not
confounded by socioeconomic status (SES), regression models for
the four meaningful effects from the main analyses were rerun
with an SES measure as an additional covariate of non-interest.
Accounting for SES in these models did not meaningfully change
the findings, suggesting that it is unlikely that the current findings
are confounded by SES (see Supplemental Materials:
Supplemental Analyses and Results: Socioeconomic Status).

Discussion

The present study is the first to use a graph theory approach to
examine the relationships among CD symptomatology, metrics
of neural topology, and behavioral assessments of neurocognitive
functioning. Using this approach, we demonstrate that CD-related
differences in neural topology partially mediate the relationship
between CD symptomatology and neurocognitive functioning.
More specifically, in the global analysis, we show that higher
CD symptomatology is associated with increased clustering,
which partially mediates the relationship between CD symptoma-
tology and impairments in general neurocognitive functioning. In
addition, in the node-level analysis, we show that higher CD
symptomatology relates to the hubness of subcortical structures,
which partially mediates the relationship between CD symptoma-
tology and decreased ability to initially encode, and/or subse-
quently recognize previously seen, facial stimuli. These findings
provide evidence that CD symptomatology is related to funda-
mental shifts in the topology of neural communication through-
out the brain. Moreover, the present findings help elucidate
some of the relationships between topological shifts and neuro-
cognitive functioning.

Graph theory: global metrics

The present study shows that youth higher on CD symptomatol-
ogy exhibit higher levels of clustering in their global neural com-
munication. Interestingly, despite the association between CD and
impairments in neurocognitive functioning, higher global cluster-
ing is typically associated with more optimal neural network
topology, and, by extension, enhanced neurocognitive functioning

(Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006; Liao,
Vasilakos, & He, 2017; Suprano et al., 2019; Wang et al., 2009).
Higher clustering is thought to allow for greater functional segre-
gation and to help facilitate robust and efficient local neural com-
munication (i.e., communication between sets of nodes in a
directly connected “neighborhood”). In addition, when paired
with high global efficiency, networks with high global clustering
coefficients are categorized as “small-world” networks, a type of
network topology thought to be ideal for robust and effective
information processing for human cognition (Achard et al.,
2006; Liao et al., 2017; Wang et al., 2009). However, while the
effect sizes are small, the results from the current study suggest
that, for youth higher on CD symptomatology, this heightened
global clustering actually may help support impairments in gene-
ral neurocognitive functioning.

Though speculative, one possible explanation of this effect is
that the CD-related increase in global clustering may increase
functional segregation to such a degree that, without a corre-
sponding increase in global efficiency, flexible neural communica-
tion and information integration between more distal nodes or
networks may actually become inhibited. This, in turn, could
unbalance global neural communication and impair broader neu-
rocognitive functions that rely on this type of flexible and
dynamic integration of information between distal networks
(e.g., impair decision-making or general intellect).

Another potential explanation for the effect in the present
study is that neurocognitive functioning and small-world charac-
teristics (e.g., clustering or efficiency) may not be linearly related.
Research in both neurotypical and antisocial adult populations
suggests that some neural factors (e.g., small-world network char-
acteristics) and neurocognitive functioning may have a
“U-shaped” relationship, where any deviation from the “optimal”
level of these metrics (e.g., either hyper- or hypo-clustering) neg-
atively relates to neurocognitive abilities (Freches et al., 2020;
Tillem, van Dongen, Brazil, & Baskin-Sommers, 2018).
Accordingly, hyper-clustering associated with CD may place
youth higher on CD symptomatology slightly outside the “opti-
mal” clustering range for maximally effective neurocognitive func-
tioning, explaining the small, but meaningful, mediation effects
found in the current study.

Graph theory: node metrics

At a node-level, youth higher on CD symptomatology display
lower Degree in subcortical structures, indicating fewer direct
connections to these structures in these youth. While these find-
ings are consistent with prior connectivity research in CD (Finger
et al., 2012; Passamonti et al., 2012), these node-level effects are
statistically (see Footnotes 5 and 6) and conceptually distinct
from basic connectivity effects. More specifically, prior work
using traditional rs-fMRI and DTI connectivity methods show
that youth with CD display reduced functional and aberrant
structural connectivity between discrete pairs of cortical and sub-
cortical structures (e.g., reduced prefrontal-amygdala connectivity
or aberrant microstructural integrity in the uncinate fasciculus;
Finger et al., 2012; Passamonti et al., 2012). The current findings,
however, suggest that youth higher on CD symptomatology
exhibit fundamentally fewer direct connections between cortical
and subcortical structures, in general. Accordingly, not only
may certain specific cortical–subcortical connections be weakened
in these youth, multiple direct cortical–subcortical connections
actually may be absent.
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The reduction in the number of direct cortical–subcortical
connections, in turn, could result in subcortical structures acting
as less of an integrative hub for neural communication in youth
higher on CD symptomatology and subcortical structures being
less able to communicate with various cortical networks directly
and efficiently in these youth. As a result, any neurocognitive pro-
cesses that utilize, or potentially require, direct cortical inputs to/
from subcortical structures (e.g., affective responding, memory,
etc.; Baas et al., 2004; Eichenbaum, 2001; Keightley et al., 2011)
might be delayed or impaired in youth higher on CD. While
somewhat speculative, such an interpretation is highly consistent
with both the current mediation findings linking CD-related
reductions in the number of direct cortical–subcortical connec-
tions to CD-related impairments during an emotion recognition
memory task, and prior theoretical accounts of socioaffective dis-
ruptions in antisocial populations (e.g., VIM; Blair, 1995).

Limitations

The current findings provide strong evidence that youth with
higher CD symptomatology display neuro-topological abnormal-
ities, and that these topological abnormalities contribute to neu-
rocognitive dysfunctions in CD. However, they must be
considered in light of several key limitations.

First, since we used the curated data from the ABCD Study
2.0.1 release, we were limited to conducting our graph analysis
at a network level (with entire cortical networks and subcortical
structures, collectively, acting as the nodes of our graphs). As a
result, we were unable to take a more fine-grained approach to
look at how CD symptomatology may relate to node-level differ-
ences in specific regions of cortex or structures (e.g., the amyg-
dala). Future research taking a more fine-grained approach
would be needed to both replicate our current findings and iden-
tify which specific structures, if any, may be driving the results.

Second, consistent with previous national community samples
(Merikangas et al., 2010), the prevalence of CD is low in the cur-
rent sample, particularly in comparison to samples enriched for
CD (e.g., justice-involved samples). Replication of the findings
reported here in other samples more enriched for CD is
warranted.

Third, the cross-sectional nature of the current data limited
our ability to determine at what age these neurocognitive and/
or neuro-topological abnormalities develop, gain additional
insight into any age-specific neurodevelopmental mechanisms
that may support their emergence, and assess the directionality
and/or causality of the link between CD and neurocognitive dis-
ruptions (e.g., does CD onset first and lead to neurocognitive dis-
ruptions or vice versa?). Evaluating causal relationships
longitudinally in future waves of the ABCD Study will be instru-
mental in addressing these concerns.

Fourth, prior research has subtyped youth with CD by age of
onset (e.g., symptom onset during childhood vs. adolescent onset;
Moffitt, 2006); however, the relatively young and narrow age
range of the current sample limited our ability to subtype CD
in this way. Future research with longitudinal data or older sam-
ples is warranted to assess any potential impact of age of onset on
the current findings.

Fifth, the presence of CU traits may moderate the effects of CD
on neurocognitive functioning (Dotterer et al., 2020; Graziano
et al., 2019; Viding et al., 2012). However, a reliable CU trait mea-
sure was not available for the current study (but see Hawes et al.
(2020) for an adapted CU score using items from various ABCD

measures and future releases of the ABCD data with a Social
Development substudy that will include the Inventory of
Callous-Unemotional Traits).

Sixth, all the effects reported in the current paper have small
effect sizes. While this does suggest that independent replication
of these small effects is needed to ensure that they are present
and stable across samples, it is worth noting that studies with
large samples, such as the current ABCD Study, are well suited
to reliably and precisely detect small, but potentially meaningful,
effects (see Dick et al., 2020 for a discussion of the meaningfulness
of small effects in the ABCD Study).

Finally, some participants in the current study were missing
data for the emotion recognition memory task (n = 1,070, ∼22%
of the current sample), and it is possible that systematic differ-
ences in those who were missing that data may be biasing our
findings for analyses using data from the emotion recognition
memory task. While this possibility is unlikely since the subsam-
ple missing these data did not systematically differ on CD symp-
tomatology (see Footnote 4 and Supplemental Materials:
Supplemental Analyses and Results: Missing Subject Analysis),
future research replicating these findings in samples with less
missing data will help address any potential biasing of these
results.

Conclusions

In sum, the present study reports that youth higher on CD symp-
tomatology display abnormal neural topologies at multiple levels
of analysis, and that these topological abnormalities mediate the
relationship between CD symptomatology and different aspects
of neurocognitive functioning. The topological abnormalities
identified in the present study represent candidate neural mecha-
nisms contributing to the well-documented neurocognitive defi-
cits associated with CD. The application of graph analysis may
serve to advance our understanding of the neural underpinnings
of human cognition across clinical populations.

Supplementary Material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0954579421000237.
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