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Abstract
Recent advances in the application of graph theory made it possible to quantify the effi-
ciency of communication within a neural network, going beyond traditional connectivity
methods that only identify the degree to which neural regions are connected. Psycho-
pathic traits, namely, interpersonal-affective and impulsive-antisocial traits, have been
linked to widespread and distinct disruptions in neural connectivity. The efficiency of
neural communication for individuals high on these psychopathic traits, though, is
unknown. In the present study, resting-state EEG was used to generate a connectivity
matrix (i.e., weighted phase lag index) for multiple frequency bands. These connectivity
matrices were examined using minimum spanning tree analysis, a graph theory approach
that allows for the examination of neural efficiency, and regressed on Self-Report Psy-
chopathy-Short Form scores (n5 158, unselected community sample). Results indicated
that individuals with higher interpersonal-affective traits had significantly less efficient
communication within alpha1 (i.e., long-range neural communication) and gamma (i.e.,
short-range neural communication) frequency bands. Conversely, individuals with
higher impulsive-antisocial traits had more efficient communication within these same
frequency bands. Overall, elevated psychopathic traits were related to alterations in the
basic efficiency of neural communication. Moreover, this unique application of graph
analysis provides a new avenue for inquiry into the mechanisms underlying the chronic
and severe behavior of individuals with psychopathic traits.
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1 | INTRODUCTION

The capacity for socialization is one of the most fundamental
and important qualities of human nature. Yet, throughout

history and across cultures, we find individuals whose biolog-
ical temperament precludes normal socialization (Lykken,
1957). Psychopathic individuals exemplify this personality
type, showing social, emotional, and behavioral deviances
that violate socialization norms. These individuals are charac-
terized by interpersonal-affective traits that interfere with their
ability to form genuine relationships and display an adequate
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depth and breadth of emotion, as well as impulsive-antisocial
traits that involve a general failure to inhibit inappropriate
actions and a chronic antisocial lifestyle (Hare, 2003).
Although their numbers in the general population are small
(approximately 1%), the behavior of individuals high on psy-
chopathic traits comes at a great cost to the individual and to
society, resulting in a substantial economic and public health
burden (Kiehl & Hoffman, 2011). A clear understanding of
the mechanisms that underlie their abject failure to adhere to
social norms remains somewhat elusive. Increasingly, though,
there is evidence that the interpersonal deficits, emotional dis-
turbances, and antisocial behavior characteristics of individu-
als high on psychopathic traits are rooted in widespread
neural abnormalities (Carre, Hyde, Neumann, Viding, & Har-
iri, 2013; Cohn et al., 2015; Finger et al., 2012; Glenn, Raine,
& Schug, 2009; Hoppenbrouwers et al., 2013, 2014; Koenigs,
Kruepke, & Newman, 2010; Motzkin, Newman, Kiehl, &
Koenigs, 2011; Pape et al., 2015; Philippi et al., 2015; Yang
et al., 2012; Yoder, Lahey, & Decety, 2016).

One way of gaining further insight into these neural
abnormalities in individuals high on psychopathic traits is
the examination of neural connectivity. To date, two connec-
tivity methodologies have been applied in psychopathy
research: (a) traditional connectivity analyses that examine
region-to-region relationships, and (b) thresholded graph
analyses. First, traditional connectivity analyses examine the
strength of neural communication between brain regions by
either evaluating the degree to which discrete brain regions
are functionally coupled (i.e., the degree to which neural
activity in one region is correlated with activity in another
region; Fox & Greicius, 2010) or by determining the thick-
ness or integrity of white matter tracts connecting various
brain regions (Hua et al., 2008). Across studies using these
traditional connectivity methods, individuals high on psycho-
pathic traits exhibit widespread disruptions in neural commu-
nication. For example, individuals high on psychopathic
traits exhibit connectivity abnormalities between discrete
brain regions (Finger et al., 2012; Hoppenbrouwers et al.,
2013; Motzkin et al., 2011; Pape et al., 2015; Yoder et al.,
2016), within and between major neural networks (Carre
et al., 2013; Cohn et al., 2015; Glenn et al., 2009; Philippi
et al., 2015), and between cortical hemispheres (Hoppen-
brouwers et al., 2014; Raine et al., 2003). While psycho-
pathic traits are consistently associated with aberrant neural
connectivity, the directionality of these differences is not
always consistent, particularly when examining the subcom-
ponent traits of psychopathy (Carre et al., 2013; Pape et al.,
2015; Philippi et al., 2015).

Philippi and colleagues (2015) find that the deficits in
functional connectivity seen in individuals high on psycho-
pathic traits are primarily driven by the interpersonal-
affective psychopathic traits (i.e., factor 1 traits), not the
impulsive-antisocial psychopathic traits (i.e., factor 2 traits).

In fact, when factor 1 and factor 2 traits are modeled sepa-
rately, factor 1 traits are associated with blunted connectivity
in the default mode, frontoparietal, and cinguloopercular net-
works, while factor 2 traits are associated with hyperconnec-
tivity in those networks (Philippi et al., 2015). This
differential, and opposite, pattern of results is consistent with
dual-trait conceptualizations of psychopathy (Neumann,
Johansson, & Hare, 2013; Patrick, 2007) and suggests that
these subcomponent psychopathic traits are associated with
distinct abnormalities in the neural networks subserving
social cognition, initial allocation of attention, and cognitive
control, respectively (Dosenbach, Fair, Cohen, Schlaggar, &
Petersen, 2008; Jack et al., 2013; Spreng & Grady, 2010;
Spreng, Mar, & Kim, 2009). Regardless of these directional
inconsistencies, there is an overwhelming amount of evi-
dence from traditional connectivity analyses that individuals
high on psychopathic traits display distinct differences in
neural connectivity (Carre et al., 2013; Cohn et al., 2015;
Finger et al., 2012; Glenn et al., 2009; Hoppenbrouwers
et al., 2013, 2014; Koenigs et al., 2010; Motzkin et al., 2011;
Pape et al., 2015; Philippi et al., 2015; Yoder et al., 2016).

A second method for examining the aberrant connectivity
exhibited in individuals high on psychopathic traits is the
application of thresholded graph analyses to structural net-
work organization data. Whereas traditional connectivity
analyses essentially quantify whether or not regions commu-
nicate with one another, graph analyses are used to estimate
how well and in what manner neural regions communicate
with one another by quantifying various network characteris-
tics, including metrics of network efficiency. To illustrate the
distinction between traditional connectivity and network effi-
ciency measures, consider the following example: Two small
airlines (Airline I and II) offer flights between five airports
(A, B, C, D, and E). Airline I offers flights between airports
A-B, B-C, C-D, and D-E, meaning to get from airport A to
airport E a passenger needs to travel through three additional
airports. In contrast, Airline II offers all flights between air-
ports through airport A, a “hub,” allowing a passenger to
travel to any airport while only going through one additional
airport (i.e., A) at most. Using traditional connectivity analy-
ses, Airline I’s network and Airline II’s network are equally
connected; passengers can travel from any of the airports to
any other airport. However, using a graph theory approach,
Airline I is less efficient than Airline II, requiring more time
and energy for passengers to travel among the various air-
ports. In the context of neural networks, traditional connec-
tivity analyses estimate the amount of communication
between brain regions while graph analyses can estimate the
amount of time or energy required to transfer information
from one part of the network (or node) to any other part of
the network (Bullmore & Sporns, 2009; Minati, Grisoli,
Seth, & Critchley, 2012; Reijneveld, Ponten, Berendse, &
Stam, 2007; Smit, de Geus, Boersma, Boomsma, & Stam,
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2016; Stam & Reijneveld, 2007; Stam et al., 2014; Tewarie,
van Dellen, Hillebrand, & Stam, 2015). In thresholded graph
analyses, specifically, the efficiency of neural communica-
tion is defined as the number of edges (i.e., connections
between nodes defined by a specific arbitrary strength thresh-
old) that information needs to travel through during neural
communication. The more edges that information needs to
pass through (i.e., the longer the average path length from
one node to another node), the less efficient the network
(Smit et al., 2016; Stam & Reijneveld, 2007; Stam et al.,
2014; Tewarie et al., 2015). In general, less efficient net-
works tend to be associated with impairments in higher-order
cognitive processes (e.g., decision making, social reasoning;
Jakab et al., 2013; Minati et al., 2012). By contrast, networks
with more direct edges between neural nodes are more effi-
cient (requiring less time or energy to transfer information
between nodes), particularly when those direct edges are
connecting functionally related nodes (i.e., nodes that com-
monly communicate or coactivate). Moreover, more efficient
neural communication tends to be associated with improved
cognitive functioning (Langer et al., 2012; Minati et al.,
2012; Neubauer & Fink, 2009; van Den Heuvel, Stam,
Kahn, & Hulshoff Pol, 2009).

In research on psychopathic traits, only one study used
this thresholded graph approach. Utilizing structural MRI
data, Yang and colleagues (2012) find that individuals high
on psychopathic traits display a less efficiently organized
neural network within the frontal lobe. More specifically,
when information is transferred from one node in the frontal
lobe to any other frontal node, it travels through more edges
in individuals high on psychopathic traits than in individuals
low on these traits. This suggests that individuals high on
psychopathic traits may display a delay or deficit in their
ability to efficiently integrate information between frontal
brain regions, potentially resulting in delayed or fractionated
processing of information (Bullmore & Sporns, 2009; Yang
et al., 2012).

While Yang and colleagues (2012) provide the first evi-
dence of altered information flow in individuals high on psy-
chopathic traits, recent advances in graph analysis led to
criticism of the methods used in a thresholded graph
approach. Results from thresholded graph analyses are unsta-
ble, often changing drastically in response to minor changes
in the arbitrary threshold used to define the graph (Reijne-
veld et al., 2007; Smit et al., 2016; Stam & Reijneveld,
2007; Stam et al., 2014; Tewarie et al., 2015; Van Wijk,
Stam, & Daffertshofer, 2010). Additionally, because edges in
thresholded graphs are defined by an arbitrary threshold for
connection strength, most thresholded graphs have a different
total number of edges (e.g., if graph A has 7 connections
with a connection strength over threshold X, but graph B has
18 connections with a connection strength over threshold X,
then graph A will only have 7 edges, but graph B will have

18 edges), which is highly problematic for between-groups
(i.e., between-graph) comparisons, like the ones reported by
Yang and colleagues (2012). Comparing thresholded graphs
with differing numbers of edges artificially inflates the likeli-
hood of finding between-groups differences in network effi-
ciency (Reijneveld et al., 2007; Smit et al., 2016; Stam &
Reijneveld, 2007; Stam et al., 2014; Tewarie et al., 2015;
Van Wijk et al., 2010). Moreover, beyond the specific limita-
tions of thresholded graph analyses, Yang and colleagues
(2012) used an indirect measure of structural connectivity
(i.e., gray matter thickness). Notably, other research using
traditional connectivity analyses in individuals high on psy-
chopathic traits shows inconsistencies between abnormalities
in structural and functional connectivity (Finger et al., 2012);
thus, it remains unclear whether psychopathic traits also are
associated with any abnormalities in neural network effi-
ciency at a functional level. Despite these limitations, Yang
et al. (2012) provides preliminary evidence that individuals
high on psychopathic traits exhibit less efficiently organized
neural networks in the frontal lobe.

Overall, there is strong evidence that individuals with
psychopathic traits display widespread disruptions in neural
connectivity (Carre et al., 2013; Cohn et al., 2015; Finger
et al., 2012; Glenn et al., 2009; Hoppenbrouwers et al.,
2013, 2014; Koenigs et al., 2010; Motzkin et al., 2011; Pape
et al., 2015; Philippi et al., 2015; Yang et al., 2012; Yoder
et al., 2016). Moreover, these disruptions may lead to ineffi-
cient neural communication, particularly within the frontal
lobes (Yang et al., 2012). However, it is unlikely that any
neural inefficiency is limited to the frontal lobes. From tradi-
tional connectivity findings, individuals high on psycho-
pathic traits show abnormalities in a variety of different
neural networks and circuits. Two of the networks most reli-
ably identified include the frontostriatal circuitry (Motzkin
et al., 2011; Sobhani, Baker, Martins, Tuvblad, & Aziz-
Zadeh, 2015; Wolf et al., 2015) and the default mode net-
work (Glenn et al., 2009; Motzkin et al., 2011; Philippi
et al., 2015), which are essential for higher-order cognitive
processes such as decision making (Brand, Labudda, & Mar-
kowitsch, 2006; Clark, Cools, & Robbins, 2004; Dalley,
Mar, Economidou, & Robbins, 2008) and affective theory of
mind (Jack et al., 2013; Sebastian, Fontaine et al., 2012;
Spreng & Grady, 2010; Spreng et al., 2009), respectively.
While inefficient communication within those networks
might help explain the psychopathy-related impairments in
those higher-order processes (e.g., decision making, Buck-
holtz et al., 2010; Glenn et al., 2009; Koenigs et al., 2010;
and affective theory of mind, Sebastian, McCrory et al.,
2012; Shamay-Tsoory, Harari, Aharon-Peretz, & Levkovitz,
2010), the exact association between psychopathic traits and
neural (in)efficiency remains unclear due to the limitations of
the previous connectivity approaches used in psychopathy
research.
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Newer applications of graph theory using minimum span-
ning tree (MST) analysis address the critical limitations of
thresholded graph analyses and other conventional graph
analyses (Reijneveld et al., 2007; Smit et al., 2016; Stam &
Reijneveld, 2007; Stam et al., 2014; Tewarie et al., 2015).
Similar to thresholded graphs, MSTs are derived from con-
nectivity data; however, they differ from thresholded graphs
in that MSTs are loopless and have a fixed number of edges.
While the loopless nature of MSTs limits their ability to eval-
uate certain network characteristics (e.g., clustering or modu-
larity), the fixed number of edges confers a couple of
advantages to MST analyses when evaluating network effi-
ciency. First, it avoids the need to set an arbitrary threshold
for an edge to be included in the network, allowing for more
reliable and valid evaluations of network efficiency (Reijne-
veld et al., 2007; Smit et al., 2016; Stam & Reijneveld, 2007;
Stam et al., 2014; Tewarie et al., 2015). Second, the fixed
number of edges allows for unbiased comparisons of graphs
between individuals or groups (e.g., comparisons between a
psychopathy group and a control group; Fraga Gonzalez
et al., 2016; Reijneveld et al., 2007; Smit et al., 2016; Stam &
Reijneveld, 2007; Stam et al., 2014; Tewarie et al., 2015).
Due to these advantages, this MST approach is often used to
examine magnetoencephalogram (MEG) or EEG connectivity
data in various clinical populations, (e.g., dyslexia, Fraga
Gonzalez et al., 2016; multiple sclerosis, Tewarie et al.,
2014). However, MST methods have not yet been applied to
the examination of neural efficiency in psychopathic traits.

The present study uses MST analyses on resting-state
EEG data to evaluate the relationship between psychopathic
traits and the efficiency of neural communication. Given the
research showing that the interpersonal-affective (factor 1) and
impulsive-antisocial (factor 2) traits of psychopathy are associ-
ated with divergent, and even opposing, patterns of neural
connectivity (Carre et al., 2013; Pape et al., 2015; Philippi
et al., 2015; see also Patrick, 2007, for discussion of the dual-
trait model of psychopathy), the present study focuses on these
subcomponent traits of psychopathy. Additionally, the present
study examines multiple resting-state EEG wavebands: alpha
(8–12 Hz) and gamma (30–45 Hz). First, the alpha frequency
bands are examined because low-frequency bands, such as
alpha, are reliably implicated in long-range neural communica-
tion between spatially disparate brain regions (i.e., integration
of information across disparate brain regions; Canolty et al.,
2006; Doesburg, Vinette, Cheung, & Pang, 2012; Fell &
Axmacher, 2011; Tewarie et al., 2014; von Stein & Sarnthein,
2000; Vourkas et al., 2014), which is vital for higher-order
processes (Sepulcre et al., 2010); efficient alpha communica-
tion is linked with specific processes shown to be deficient in
individuals high on psychopathic traits (e.g., decision making
and affective theory of mind; Jakab et al., 2013; Minati et al.,
2012); alpha activity is implicated in the functioning of the
default mode network (Broyd et al., 2009; Chen, Feng, Zhao,

Yin, & Wang, 2008), which appears to be dysfunctional in
individuals with psychopathic traits (Glenn et al., 2009; Motz-
kin et al., 2011; Philippi et al., 2015); and abnormal alpha
activity is associated with aggressive and antisocial individuals
(Kamarajan et al., 2006; Lindberg et al., 2005; Rybak, Cray-
ton, Young, Herba, & Konopka, 2006). Second, the gamma
frequency band is examined because it is implicated in short-
range neural communication (von Stein & Sarnthein, 2000)
vital to lower-order processes (Sepulcre et al., 2010), and
recent evidence shows that individuals high on psychopathic
traits display aberrant neural responses to more basic, lower-
order sensory processes (Tillem et al., 2016). By considering
both alpha and gamma frequency bands, it is possible to
examine whether abnormalities related to psychopathic traits
are specific to higher-order versus lower-order processes, or
are a reflection of truly widespread abnormalities that span
levels of processing.

Based on previous research showing that factor 1 traits
are associated with hypoconnectivity, abnormal higher-order
processes associated with alpha, and abnormal lower-order
processes associated with gamma, it is expected that individ-
uals high on factor 1 traits, but not factor 2 traits, will show
less efficient neural communication within the alpha and
gamma frequency bands. By contrast, based on previous
research showing that factor 2 traits are associated with
hyperconnectivity and opposite neural patterns as factor 1
traits, it is possible that these traits will be associated with
efficiency patterns that are the opposite of factor 1 traits.

2 | METHOD

2.1 | Participants

Participants were 172 community members from the general
population and student population at Erasmus University
Rotterdam. The sample consisted of 108 male (62.79%) and
63 female (36.63%) adults aged 17 to 63 (M5 22.58,
SD5 7.47) who were recruited through online social media,
flyers, and an online research participation channel for stu-
dents. Prior to data collection, a prescreen phone interview
and in-person assessment materials were used to exclude
individuals who were younger than 16 or over 65 and indi-
viduals who had a history of neurological or psychiatric
issues that may impact their comprehension of the materials
or completion of the self-report measures (e.g., uncorrectable
auditory or visual deficits; head injury with loss of con-
sciousness greater than 30 min; risk for psychiatric morbid-
ity; and common mental health domains of depression,
anxiety, somatic symptoms, and social withdrawal). All par-
ticipants provided written informed consent. Research was
conducted in compliance with the Code of Ethics of the
World Medical Association (Declaration of Helsinki) and the
standards established by the Institutional Review Board at
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Erasmus University Rotterdam. Participants earned a candy
bar or course credits (students) for their completion of the
self-report measures and EEG recording.

2.2 | Psychopathic traits measure

2.2.1 | Self-Report Psychopathy-Short Form

(SRP-SF, Dutch version; Gordts, Uzieblo, Neumann, Van den
Bussche, & Rossi, 2017). Psychopathic traits were assessed
using the SRP-SF, which consists of 29 items derived from
the full 64-item version of the Self-Report Psychopathy-III.
Every item is measured on a 5-point Likert scale (15 disagree
strongly to 55 agree strongly). The SRP-SF has a strong cor-
relation with the Self-Report Psychopathy-III, which in turn
correlated strongly with the Psychopathy Checklist-Revised
(PCL-R; Neumann, Hare, & Pardini, 2015). The SRP-SF has
a total minimum score of 29 and a maximum score of 145.
The SRP-SF factors, factor 1 (interpersonal-affective) and fac-
tor 2 (impulsive-antisocial), are established strongly correlated
measures of the subcomponent traits of psychopathy (in the
present sample, r5 .713, p< .001). Factors 1 and 2 have a
minimum score of 14 and a maximum score of 70.

The reliability and validity of the SRP-SF and its factors
are well established (Debowska, Boduszek, Kola, & Hyland,
2014; Gordts et al., 2017; Hare, 2003; Lilienfeld & Fowler,
2006; Mahmut, Menictas, Stevenson, & Homewood, 2011;
Neumann & Pardini, 2014). In the present study, SRP-SF
factor 1 and SRP-SF factor 2 scores had a Cronbach’s a of
.843 and .809, respectively. Regarding validity of the SRP-
SF scores in the present study, we ran a confirmatory factor
analysis with STATA using the weighted least squares
means and recommended fit indices (Hu & Bentler, 1999).
The two-factor solution achieved acceptable fit across multi-
ple indices (chi-square/df5 896.25/376, RMSEA5 .07,
pclose< .001, SRMR5 .08, CFI5 .86).

2.3 | EEG data acquisition

EEG was recorded during a resting state of either 8 (n5 148)
or 6 min (n5 24) total, in which eyes open (EO) and eyes
closed (EC) conditions alternated every 1 min. Brain activity
was recorded with the EEG using a BioSemi ActiveTwo Sys-
tem amplifier (Amsterdam, The Netherlands) from the 32 stand-
ard (10–20 International system) scalp sites and two additional
scalp sites (FCz, CPz) using active Ag/AgCl electrodes. Four
additional electrodes were used to measure vertical electroocu-
logram (VEOG) and horizontal electrooculogram (HEOG) and
were placed above and below the left eye (VEOG) and at the
outer canthi of the eyes (HEOG). Two additional electrodes
were placed on the left and right mastoids. All signals were
digitized with a sampling rate of 512 Hz and 24-bit analog-to-
digital conversion and were filtered offline.

2.4 | EEG data preprocessing

Prior to data processing, 10 participants were excluded from the
analysis due to either technical issues during data acquisition
(e.g., broken sensors, software crashes; n5 9) or missing ques-
tionnaire data (n5 1). For the remaining 162 participants, EEG
data from 26 channels (F3, Fz, F4, FC5, FC1, FC2, FC6, T7,
C3, Cz, C4, T8, CP1, CP2, P3, Pz, P4, O1, Oz, O2, Fp1, AF3,
PO3, PO4, AF4, Fp2) were preprocessed offline using BrainVi-
sion Analyzer 2 software (Brain Products GmbH, Germany).
The signals were rereferenced to the linked mastoids, and ocular
artifacts were removed from the EEG using independent com-
ponent analyses (Jung et al., 2000). Eye movements were
recorded with electrodes placed above and below the left eye
and at the outer canthi. For each condition, 120 (n5 139) or 90
(n5 23) epochs with a length of 2 s were created, which were
then filtered using a 0.02–50 Hz (24 dB/oct) band-pass filter
and checked for gradient artifacts (maximum voltage step of 50
mV/ms) and excessively low activity (below 0.5 mV in 100-ms
intervals). The data were subsequently exported as text files for
connectivity analysis in BrainWave (https://home.kpn.nl/
stam7883/brainwave.html; version 9.152.4.1).

Following preprocessing, participants who had all their
data rejected due to signal artifact (n5 2) or who had signifi-
cantly fewer valid data than the rest of the sample (i.e., statis-
tical outliers for amount of valid data following data
rejection; n5 2) were excluded from further analysis, leaving
the final sample at n5 158. We ran a logistic regression
comparing SRP-SF scores in included versus excluded par-
ticipants. The analysis showed that excluded participants did
not significantly differ from included participants in SRP-SF
factor 1 scores, v2(2)5 3.234, p5 .198; b5 -.027, p5 .599,
or SRP-SF factor 2 scores, b5 -.043, p5 .389. For charac-
teristics of the final sample, see Table 1.

2.5 | EEG connectivity analysis

Prior to generating the MST graphs, connectivity data for
each node in the network needed to be obtained. Accord-
ingly, the electrode space was rearranged and matched to the
montage built into the BrainWave package, resulting in 18
usable electrodes.1 Next, data were filtered into relevant fre-
quency bands (i.e., alpha1, 8–10 Hz; alpha2, 10–12 Hz;2

gamma, 30–45 Hz), and run through a weighted phase lag
index (wPLI) connectivity analysis. This wPLI was calcu-
lated to evaluate functional connectivity between the 18

1Useable electrodes included F3, Fz, F4, FC5, FC1, FC2, FC6, C3, Cz,
C4, P3, Pz, P4, O1, Oz, O2, Fp1, Fp2.
2The alpha frequency band was broken down into alpha1 and alpha2 in
accordance with recent methodological conventions in graph theory anal-
ysis (Fraga Gonzalez et al., 2016; Tewarie et al., 2014; van Diessen,
Otte, Braun, Stam, & Jansen, 2014).
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electrodes, within each epoch, for each frequency band, for
each condition, for each participant. Standard phase lag index
analysis quantifies phase synchronization in two different
time series by examining the asymmetry of the distributions
of instantaneous phase differences. wPLI expands upon these
analyses by also accounting for the magnitude of phase dif-
ferences between the two time series (Hardmeier et al., 2014;
Vinck, Oostenveld, Van Wingerden, Battaglia, & Pennartz,
2011).wPLI connectivity data were then reorganized into
wPLI connectivity matrices for each epoch, for each fre-
quency band, for each condition, for each participant to allow
for the MST analysis. Then, connectivity matrices were aver-
aged across epochs resulting in one average connectivity
matrix, per frequency band, per condition, per participant.
These average connectivity matrices were then inversed (i.e.,
matrices5 12wPLI), in order to assign the smallest values
to the shortest distances (i.e., the strongest connections) of
one node to each other node in the network. This allowed the
subsequent MST analysis to provide a robust estimation of a
highly connected and efficient subnetwork.

2.6 | MST analysis

Using the average connectivity matrices and the Kruskal
algorithm (Kruskal, 1956), MSTs were generated in MAT-
LAB (using MATLAB’s graphminspantree function; https://
www.mathworks.com/help/releases/R2016a/bioinfo/ref/graph-
minspantree.html). This process generated one MST graph per
frequency band, per condition, per participant. A MST is a sub-
graph in which all nodes are connected (either directly or indi-
rectly) to all other nodes in the network, but which contains no
loops. These specifications necessitate that all MST graphs
with a specific number of nodes (N) have the same number of
edges (E; E5N 2 1), allowing for unbiased between-graph
comparisons (Reijneveld et al., 2007; Smit et al., 2016; Stam

& Reijneveld, 2007; Stam et al., 2014; Tewarie et al., 2015).
The Kruskal algorithm constructs these MSTs by ordering all
the possible edges in sequence from least costly (i.e., the
strongest connection) to most costly (i.e., the weakest connec-
tion). Then, the algorithm goes down that list of possible edges
adding each edge to the graph until the MST graph is complete
(i.e., until E5N2 1). During this process, if the algorithm
comes across an edge that would create a loop, it skips that
edge and continues to the next edge on the list.

Following the construction of these MSTs, metrics about
the configuration of each MST were extracted in MATLAB
utilizing a combination of native MATLAB functions, the
MIT graph toolbox (http://strategic.mit.edu/downloads.php?
page5matlab_networks), and custom MATLAB scripts.
Different MST configurations are associated with different
levels of efficiency, ranging from a star configuration (the
maximally efficient configuration) to a line configuration
(the minimally efficient configuration; see Figure 1 for exam-
ples). A star configuration is a network in which all nodes,
except one, are connected to a single central node, which
acts as a hub for the network (e.g., Airline II in example
above). This is a maximally efficient network configuration
because information can flow from any node to any other
node in the network, while only needing to travel through a
maximum of two edges. In contrast, a line configuration is a
MST in which every node is connected to exactly two other
nodes, except for the two nodes at the ends of the graph,
which are only connected to one other node (e.g., Airline I in
example above). In this configuration, for information to
flow from one node to any other node in the network would
require that information travel through anywhere between
one edge and all edges of the network (Reijneveld et al.,
2007; Smit et al., 2016; Stam & Reijneveld, 2007; Stam
et al., 2014; Tewarie et al., 2015).

TABLE 1 Final sample characteristics

N Min Max Mean SD

Age 158 17.00 63.00 22.66 7.72

Gender

Male 103
Female 55

Number of valid epochs

Eyes closed epochs 157 20 120 102.57 21.58
Eyes open epochs 158 25 120 102.37 22.39
Combined epochs 158 56 240 204.41 43.38

SRP-SF total score 158 29 98 53.83 14.16

SRP-SF factor 1 158 14 48 27.61 7.98

SRP-SF factor 2 158 15 52 26.22 7.31

FIGURE 1 Examples of minimum spanning tree configurations. This
figure depicts three examples of MST configurations, with black circles
representing leaf nodes (i.e., nodes only connected to one other node),
white circles representing hub nodes (i.e., nodes connected to two or more
other nodes), and lines representing edges. The top MST depicts an exam-
ple of a line configuration (the minimally efficient network configuration),
the middle MST depicts an intermediate network configuration that would
be of middling efficiency, and the bottom MST depicts an example of a
star configuration (the maximally efficient network configuration)
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There is a variety of MST characteristics that can be used
to quantify the degree to which any given MST’s configura-
tion is either starlike or linelike (i.e., efficiency of the configu-
ration). For example, the leaf fraction of a MST can be used
as a continuous metric of MST configuration efficiency.
A leaf is a node that is only connected to one edge (i.e., a node
that is only directly connected to one other node). Leaf fraction
is defined as the ratio of nodes that are leafs to the maximum
number of possible leafs in the graph (number of leafs/N 2 1).
A MST with a star configuration will have the maximum num-
ber of possible leafs (leaf fraction5 1) as all nodes except one
are only connected to a centralized hub. In contrast, a MST
with a line configuration will have the minimum number of
possible leafs (leaf fraction5 2/N 2 1) as this configuration
only contains the two leafs that are required for a MST. MSTs
in between these two extremes will display varying levels of
leaf fraction, with higher leaf fractions indicating a more star-
like (i.e., more efficient) network configuration and lower leaf
fractions indicating a more linelike (i.e., less efficient) network
configuration. In addition to leaf fraction, several other MST
characteristics can be examined as quantifiable measures of the
efficiency of a given MST configuration. These measures
include maximum degree (degreemax), mean eccentricity (ECC-

mean), maximum betweenness centrality (BCmax), kappa, and
diameter (measures are summarized in Table 2; Reijneveld
et al., 2007; Smit et al., 2016; Stam & Reijneveld, 2007; Stam
et al., 2014; Tewarie et al., 2015).

2.7 | Data analysis

Analyses occurred in several stages (see Figure 2). First, the
association among MST variables was examined by conducting
an exploratory factor analysis (EFA) with varimax rotation on
all measures of overall efficiency (i.e., degreemax, ECCmean,

BCmax, kappa, diameter, leaf fraction) using SPSS. The EFA
analysis showed that all MST measures of network efficiency
loaded onto a single factor, within each of the frequency bands,
for both the EO (alpha1, eigenvalue5 5.39, total variance
accounted for5 89.77%; alpha2, eigenvalue5 5.31, total var-
iance accounted for5 88.58%; gamma, eigenvalue5 5.38, total
variance accounted for5 89.68%) and EC data sets (alpha1,
eigenvalue5 5.27, total variance accounted for5 87.79%;
alpha2, eigenvalue5 5.30, total variance accounted for-
5 88.25%; gamma, eigenvalue5 5.30, total variance accounted
for5 88.32%).

Second, to determine whether data from EO and EC
could be combined, paired t-test contrasts were run within
each frequency band to determine whether the efficiency fac-
tors significantly differed between the two data sets. The effi-
ciency factors did not significantly differ between the EO
and EC data sets within the alpha1 frequency band, t(156)5
20.047, p5 .963, the alpha2 frequency band, t(156)5 0.158,
p5 .874, or the gamma frequency band, t(156)5 0.195,
p5 .846. Accordingly, data from EO and EC were averaged
together. That is, each subject’s connectivity matrices from
both EC and EO data sets were averaged together to create
one grand average adjacency matrix per frequency band, per
participant. These grand average matrices were then rerun
through the MST analysis described above.

Third, given the shared variance between MST metrics
of network efficiency (Smit et al., 2016), examination of
each individual MST metric would unnecessarily inflate the
number of comparisons and risk for Type I error. Accord-
ingly, we generated an overall measure of network efficiency
by running the final MST characteristics through another
EFA within each frequency band. These analyses showed
that all of the MST measures of overall efficiency loaded onto
a single overall efficiency factor (OEF) within each frequency

TABLE 2 Minimum spanning tree (MST) measures defined

Nodes (N) Total number of nodes in a MST

Edges (E) Total number of edges in a MST (E5N 2 1)

Degree Ratio of the number of edges connected to a specific node (e) to the total number of possible edges
connected to single node (degree5 e/E)

Eccentricity (ECC) Ratio of the longest distance between a specific node and any other node in the MST (ecc) to the longest
possible distance between any two nodes in the MST (ECC5 ecc/E)

Betweenness centrality (BC) Ratio of the number of shortest paths passing through a specific node (C) to the total number of possible
shortest paths passing through a specific node in the MST (BC5C/E * [E 2 1])

Kappa A measure of the variance in the degree of nodes (e) throughout the MST

Diameter Ratio of the longest, shortest path in the MST (D) to the longest possible distance between any two nodes
in the MST (diameter5D/E)

Leaf fraction The ratio of the number of leafs in the MST (L) to the possible number of leafs in the MST
(leaf fraction5 L/N 2 1)
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band (alpha1, eigenvalue5 5.32, total variance accounted for-
5 88.66%; alpha2, eigenvalue5 5.19, total variance accounted
for5 86.51%; gamma, eigenvalue5 5.35, total variance
accounted for5 89.11%).

Finally, separate linear regression models were run using
SRP-SF factors (factor 1 and factor 2; z scored) as simultane-
ous predictors of OEF scores for each frequency band. In each
model, gender (contrast-coded) also was included as a dichoto-
mous moderating variable given previous research that the
underlying etiology of psychopathic traits in men and women
may differ (O’Leary, Loney, & Eckel, 2007; Rogstad & Rog-
ers, 2008). Tests of significance were based on bootstrapping
methods (2,000 samples, bootstrapped p values, p< .05).

3 | RESULTS

3.1 | Alpha1 frequency band

Higher SRP-SF factor 1 scores were associated with signifi-
cantly lower alpha1 OEF, F(5, 152)5 4.294, p5 .001;
b520.287, p5 .039, 95% CI5 [-0.628, 20.054], indicat-
ing that individuals higher on factor 1 traits display less
efficient neural communication within the alpha1 network
(see Figure 3a). In contrast, higher SRP-SF factor 2 scores
were associated with significantly higher OEF, b5 0.317,
p5 .044, 95% CI5 [0.047, 0.646], suggesting greater

efficiency of neural communication within the alpha1 net-
work (see Figure 4a). There was also a significant main
effect of gender, where female participants displayed signifi-
cantly higher OEF than male participants, b5 0.296,
p5 .006, 95% CI5 [0.089, 0.506]. However, neither SRP-
SF factor 1 scores (p5 .098) nor SRP-SF factor 2 scores
(p5 .129) significantly interacted with gender.3

3.2 | Alpha2 frequency band

The model predicting alpha2 OEF was not significant, F(5,
152)5 2.087, p5 .070.4

FIGURE 2 Schematic of data analysis. First, EEG data were preprocessed and epochs with signal artifact were rejected. Second, all artifact-free epochs
were filtered for each frequency band and run through a weighted phase lag index (wPLI) connectivity analysis. Third, the connectivity data from thewPLI
analysis were reorganized into connectivity matrices for each epoch, and then averaged together into a single averaged connectivity matrix. Fourth, minimum
spanning tree (MST) graphs were generated for each participant’s connectivity matrix using theKruskal algorithm, andmetrics of network efficiency were
extracted from eachMST. Fifth, these efficiency metrics were run through an exploratory factor analysis to generate an overall efficiency factor (OEF).
Finally, the impact of psychopathic traits on neural efficiency was evaluated by regressing self-report psychopathy (SRP-SF) factor scores on theOEF

3Including alpha1 spectral power as a covariate in this model did not
substantively alter any of the reported results.
4We also examined alpha band activity as a unitary (8–12 Hz) measure.
Results were conceptually similar to those reported above for alpha1, but
were not statistically significant (SRP-SF factor 1: b5 -.196, p5 .097;
SRP-SF factor 2: b5 .187, p5 .210). A unitary measure of alpha band
activity is essentially a combination of two different wavebands that are
related to distinct underlying processes (Chen et al., 2008; Micheloyan-
nis et al., 2006; Miraglia, Vecchio, Bramanti, & Rossini, 2016; Petsche,
Kaplan, Von Stein, & Filz, 1997; Wu & Liu, 1995), are moderately cor-
related in the present study (Alpha1 Power 3 Alpha2 Power: r5 .368,
p< .001; Alpha1 OEF 3 Alpha2 OEF: r5 .687, p< .001), and alpha2
was unrelated to SRP-SF traits in the present study. Therefore, though
the direction of the effects was the same across the two sets of results, it
may be unsurprising that the broader alpha measure yielded a null effect.
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3.3 | Gamma frequency band

SRP-SF factor 1 scores were significantly and negatively
associated with gamma OEF, F(5, 152)5 5.805, p< .001;
b520.421, p< .001, 95% CI5 [-0.695, 20.195], indicat-
ing that individuals higher on factor 1 traits showed less effi-
cient neural communication within the gamma network
(see Figure 3b). Conversely, SRP-SF factor 2 scores were
significantly and positively associated with gamma OEF
(b5 0.507, p5 .001, 95% CI5 [0.228, 0.798]), indicating
that individuals high on factor 2 traits display more efficient
neural communication within the gamma network (see Fig-
ure 4b). There also was a significant main effect of gender,
b5 0.270, p5 .008, 95% CI5 [0.060, 0.481], where female
participants exhibited significantly higher OEF than male
participants within the gamma network. However, neither the
SRP-SF Factor 1 3 Gender interaction (p5 .113) nor the
SRP-SF Factor 2 3 Gender interaction (p5 .268) signifi-
cantly predicted OEF.5

4 | DISCUSSION

Psychopathic traits, whether interpersonal-affective or
impulsive-antisocial, represent deviancies in social, emo-
tional, and behavioral functioning. The correlates and proc-
esses associated with these traits appear to be distinct, and at
times even opposite (Baskin-Sommers et al., 2015; Neumann
et al., 2013; Patrick, 2007). The dissociation between factor 1
and factor 2 traits is clear when examining neural processes.
Previous research shows that individuals high on psycho-
pathic traits display differential disruptions in connectivity

between various neural regions (Carre et al., 2013; Pape
et al., 2015; Philippi et al., 2015). However, the manner in
which these disruptions in connectivity occur, and the effec-
tiveness of the communication among regions, remains
unclear. By applying a novel graph theory approach—MST
analysis—to resting state EEG data, the present findings are
the first to demonstrate that nonincarcerated individuals high
on factor 1 psychopathic traits show significantly less effi-
cient neural communication within the alpha1 and gamma
frequency bands. Conversely, individuals high on factor 2
show increased efficiency of neural communication within
those same frequency bands. Together, these findings indicate
that psychopathic traits are differentially associated with
abnormalities in the efficiency of neural communication in
frequency bands vital for both higher-order (e.g., decision
making, affective theory of mind) and lower-order cognitive
processes (e.g., sensation, perception).

Individuals high on factor 1 traits showed more linelike
network configurations (i.e., lower degreemax, BCmax, kappa,
and leaf fraction, and higher ECCmean and diameter), indica-
tive of less efficient neural communication, in both the
alpha1 and gamma networks. First, alpha1 is implicated in
the long-range neural communication that subserves higher-
order cognitive processes, such as decision making and
affective theory of mind (Canolty et al., 2006; Doesburg
et al., 2012; Fell & Axmacher, 2011; Minati et al., 2012;
Sepulcre et al., 2010; von Stein & Sarnthein, 2000; Vourkas
et al., 2014). The neural circuitry underlying these types of
higher-order processes is highly distributed throughout the
brain. For example, decision making evokes neural activity
in a variety of disparate brain regions, including the ventro-
medial prefrontal cortex, dorsolateral prefrontal cortex, ante-
rior cingulate cortex, anterior insula, and various other
cortical regions (Ernst et al., 2002; Sanfey, Rilling, Aronson,
Nystrom, & Cohen, 2003; Shenhav & Greene, 2010). The
distributed nature of these neural responses necessitates

FIGURE 3 Individuals high on factor 1 traits showed inefficient neural communication. (a) Regression line depicting OEF scores for the alpha1 fre-
quency band as a function of factor 1 traits, controlling for factor 2 scores, gender, and Gender3 Factor score interactions. (b) Regression line depicting
OEF scores for the gamma frequency band as a function of factor 1 traits, controlling for factor 2 scores, gender, and Gender3 Factor score interactions.
Error bands represent one standard error

5Including either gamma spectral power (30–45 Hz) or mean event-
related spectral perturbation (ERSP) for high frequency gamma band
activity (100–250 Hz) as covariates in this model did not substantially
impact the SRP-SF factor 1 or SRP-SF factor 2 findings.
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efficient long-range neural communication to ensure that all
relevant information from these disparate brain regions can
be integrated effectively (Sepulcre et al., 2010). Accordingly,
the alpha1 findings in the present study suggest that individ-
uals high on factor 1 traits exhibit impairments in efficient
long-range neural communication, which could result in
impairment in higher-order processes, such as decision mak-
ing (Babiloni et al., 2007; De Vico Fallani et al., 2010; Min-
ati et al., 2012) and affective theory of mind (Jakab et al.,
2013). Consequently, the present results suggest that the
documented failures in decision making (e.g., value-based
decision making, Buckholtz et al., 2010; Koenigs et al.,
2010; moral decision making, Glenn et al., 2009), and affec-
tive theory of mind (Sebastian, McCrory et al., 2012;
Shamay-Tsoory et al., 2010) in individuals high on factor 1
traits, may be due, at least in part, to inefficiencies in long-
range neural communication.

Second, individuals high on factor 1 traits also showed
inefficient communication in gamma. Gamma frequency
activity is related to short-range neural communication,
which is utilized for the integration of information from
more localized regions of cortex (e.g., integration of informa-
tion within primary visual cortex for basic visual processing;
Sepulcre et al., 2010; von Stein & Sarnthein, 2000). This
makes efficient gamma communication important for lower-
order cognitive processes such as sensation, perception, and
reflexive attention (Sepulcre et al., 2010). Prior research
using traditional connectivity methods with psychopathic
traits has not linked factor 1 traits with disruptions in this
type of short-range communication. However, graph theory
metrics are more sensitive to connectivity disruptions than
traditional connectivity measures (Fraga Gonzalez et al.,
2016). Furthermore, recent research has shown that factor 1
traits are associated with impairments in the integration of
sensory information (Tillem et al., 2016) and perception of
stimuli (Baskin-Sommers, Curtin, & Newman, 2013). The

current gamma findings for individuals high on factor 1 traits
add to this growing body of literature, suggesting factor 1-
related impairments in basic sensory processing, and that
these impairments may be due to breakdowns in efficient
short-range neural communication.

While these factor 1-related inefficiencies in neural com-
munication may indicate a global deficit in integration of
neural information, impacting a wide array of higher- and
lower-order cognitive processes, it is also possible that these
neural inefficiencies reflect more localized disruptions in
communication within specific neural networks. Alpha1
activity, for example, previously has been implicated with
the default mode network (Broyd et al., 2009; Chen et al.,
2008). Accordingly, the factor 1-related inefficiencies in neu-
ral communication within this frequency band may simply
reflect factor 1-related disruptions in communication within
the default mode network. Similarly, gamma-band activity
previously has been linked with the frontoparietal network
(Gregoriou, Gotts, Zhou, & Desimone, 2009a,b). Conse-
quently, inefficient communication within the gamma fre-
quency band may specifically reflect disruptions within this
network, rather than a more general breakdown in short-
range communication. While these more narrow interpreta-
tions are consistent with prior research linking psychopathic
traits with disrupted connectivity within both the default
mode (Glenn et al., 2009; Motzkin et al., 2011; Philippi
et al., 2015) and frontoparietal networks (Philippi et al.,
2015), they fail to explain the nature of the widespread con-
nectivity abnormalities associated with individuals high on
psychopathic traits (Carre et al., 2013; Cohn et al., 2015; Fin-
ger et al., 2012; Glenn et al., 2009; Hoppenbrouwers et al.,
2013, 2014; Koenigs et al., 2010; Motzkin et al., 2011; Pape
et al., 2015; Philippi et al., 2015; Yang et al., 2012; Yoder
et al., 2016). Regardless of the specific interpretation, how-
ever, the current findings clearly demonstrate that individuals
high on factor 1 traits exhibit less efficient integration of

FIGURE 4 Individuals high on factor 2 traits showed hyperefficient neural communication. (a) Regression line depicting OEF scores for the alpha1
frequency band as a function of factor 2 traits, controlling for factor 1 scores, gender, and Gender3 Factor score interactions. (b) Regression line depicting
OEF scores for the gamma frequency band as a function of factor 2 traits, controlling for factor 1 scores, gender, and Gender3 Factor score interactions.
Error bands represent one standard error
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information (either globally, or within specific networks),
which, in turn, may lead to the information processing defi-
cits characteristic of individuals high on factor 1 traits.

Unlike individuals with high factor 1 traits, individuals
high on factor 2 traits displayed more efficient, starlike neu-
ral network configurations (i.e., higher degreemax, BCmax,
kappa, and leaf fraction, and lower ECCmean and diameter).
At first glance, these findings suggest that factor 2 traits are
associated with increased efficiency of information process-
ing and integration, which should lead to enhanced cognitive
processing. However, factor 2 traits typically are not associ-
ated with better cognitive processing (Baskin-Sommers
et al., 2015; Dinn & Harris, 2000; Nigg et al., 2017). Conse-
quently, there seems to be some inconsistencies between the
neural and behavioral findings associated with factor 2 traits.
On the one hand, more neural efficiency is consistent with
the prior literature linking factor 2 traits with increased func-
tional connectivity (Korponay et al., 2017; Philippi et al.,
2015). On the other hand, it is possible that this efficiency is
a sign of vulnerability, which would be more consistent with
the neurocognitive profiles typically associated with factor 2
traits. While it is true that networks with a star configuration
are maximally efficient, they are also maximally vulnerable.
In a star-shaped network, all information is processed and
transferred through a single node that acts as a hub for the
network. If that hub node were to get overloaded (e.g., by
increased processing demands) or damaged (e.g., by a
stroke), then information transfer within that network would
either slow dramatically or stop altogether. As such, an ideal
neural network would actually balance efficiency and vulner-
ability (Reijneveld et al., 2007; Smit et al., 2016; Stam &
Reijneveld, 2007; Stam et al., 2014; Tewarie et al., 2015).
Accordingly, the hyperefficiency associated with individuals
high on factor 2 traits may leave their neural networks highly
vulnerable to being overloaded whenever processing
demands increase (see also Baskin-Sommers et al., 2012;
Brazil, Mathys, Popma, Hoppenbrouwers, & Cohn, 2017).
This vulnerability, in turn, may explain why individuals high
on factor 2 traits show more functional connectivity and effi-
ciency, but also decreased processing speed and other execu-
tive functioning deficits. Future research is needed to
evaluate the possibility of this type of vulnerability-
efficiency trade-off in neural communication in individuals
high on factor 2 traits.

While these findings provide strong evidence for abnor-
malities in the efficiency of neural communication in individ-
uals high on psychopathic traits, they must be considered in
light of two specific limitations. First, the current study was
limited to an analysis of resting-state EEG data. No task-
based neural data were collected and no measures of cogni-
tive functioning were administered. Accordingly, the pro-
posed link between psychopathy-related abnormalities in the
efficiency of long- and short-range neural communication

(i.e., alpha1 and gamma networks) and psychopathy-related
impairments in higher- (e.g., decision making) and lower-
order (e.g., sensation and perception) cognitive processes is
only speculative. Further research examining task-based neu-
ral activity would be needed to directly test whether neural
efficiency either mediates or moderates any psychopathy-
related impairments in cognitive functioning during task per-
formance (Tavor et al., 2016). Second, this study utilized a
community sample with a relatively low base rate of psycho-
pathic traits. This potentially limits the generalizability of
these findings to populations with higher rates of psycho-
pathic traits. Future research will need to replicate these find-
ings in samples more enriched for psychopathic traits (e.g.,
incarcerated samples) to ensure that these findings are
generalizable.

In sum, the present study provides evidence that the sub-
component traits of psychopathy are differentially associated
with dysfunction in the efficient integration of neural infor-
mation. Individuals high on factor 1 traits show inefficient
long- and short-range neural communication, whereas indi-
viduals high on factor 2 traits show hyperefficient long- and
short-range neural communication. There are two clear impli-
cations of these findings. First, these findings identify previ-
ously unobserved abnormalities in neural integrity that likely
impact the quality of information processing in individuals
high on psychopathic traits, albeit in different ways for the
two subcomponent traits. Second, these abnormalities in the
efficiency of both long- and short-range neural communica-
tion suggest that neural network dysfunctions in individuals
with psychopathic traits may extend beyond the network or
circuit abnormalities previously found using traditional con-
nectivity methods (e.g., default mode network, frontostriatal
circuitry). In order to refine our understanding of the neuro-
cognitive underpinnings of the subcomponent traits of psy-
chopathy, further research is needed to clarify exactly what
networks are and in what ways information processing is dis-
rupted in these individuals.
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