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Distinct neurocognitive fingerprints 
reflect differential associations 
with risky and impulsive behavior 
in a neurotypical sample
Sonia G. Ruiz 1*, Inti A. Brazil 2,3,4 & Arielle Baskin‑Sommers 1,4

Engagement in risky and impulsive behavior has long been associated with deficits in neurocognition. 
However, we have a limited understanding of how multiple subfunctions of neurocognition co-occur 
within individuals and which combinations of neurocognitive subfunctions are most relevant for risky 
and impulsive behavior. Using the neurotypical Nathan Kline Institute Rockland Sample (N = 673), we 
applied a Bayesian latent feature learning model—the Indian Buffet Process—to identify nuanced, 
individual-specific profiles of multiple neurocognitive subfunctions and examine their relationship to 
risky and impulsive behavior. All features were within a relatively normative range of neurocognition; 
however, there was subtle variability related to risky and impulsive behaviors. The relatively overall 
poorer neurocognition feature correlated with greater affective impulsivity and substance use 
patterns/problems. The poorer episodic memory and emotion feature correlated with greater trait 
externalizing and sensation-seeking. The poorer attention feature correlated with increased trait 
externalizing and negative urgency but decreased positive urgency and substance use. Finally, 
the average or mixed features negatively correlated with various risky and impulsive behaviors. 
Estimating nuanced patterns of co-occurring neurocognitive functions can inform our understanding 
of a continuum of risky and impulsive behaviors.

Risky and impulsive behaviors, including substance use, physical aggression, and other health-risk behaviors, 
are common. In 2019, 50.8% of Americans reported using alcohol1. Among these individuals, 47.1% binge 
drank and 11.5% engaged in heavy alcohol use within the past month. In that same year, a violent crime was 
committed every 26.3 s in the United States2. Further, rates of substance use and aggression rose sharply during 
the COVID-19 pandemic. Thirteen percent of Americans reported starting or increasing substance use to cope 
with pandemic-related stress3. Homicide rates rose by 4% after the onset of the pandemic and remained elevated 
through 20214. Other health-risk behaviors also were a prominent feature of the pandemic. In January 2022, 
over 40% of Americans reported non-compliance with COVID preventative measures within the past week (e.g., 
wearing masks, hand-washing)5. Altogether, these behaviors exacted profound costs on society by increasing the 
likelihood of premature death, long-term disability, and poor mental health outcomes6–9. To understand who 
tends most toward these risky and impulsive behaviors, much work has focused on neurocognitive functions 
that support the initiation, planning, representation, and achievement of flexible, goal-directed behaviors10.

Extant work suggests that deficits in various neurocognitive functions are linked to engagement in risky 
and impulsive behavior11–16. For example, deficits in working memory (the maintenance and manipulation of 
information) are associated with sustained substance use. This relationship suggests that difficulties retaining 
knowledge of use-related consequences (i.e., maintaining information) and applying this knowledge to new situa-
tions (i.e., manipulating information) may inform poorer decision-making about substance use17,18. Additionally, 
difficulties sustaining attention to goal-relevant stimuli, particularly at high levels of distraction, are related to 
trait impulsivity19,20. This relationship has been interpreted to indicate that difficulties processing goal-relevant 
cues may contribute to rash decision-making across contexts. Finally, deficits in response inhibition and cogni-
tive control relate to a latent construct of externalizing (which encompasses trait impulsivity and risky behaviors 
such as substance misuse), suggesting that a general difficulty inhibiting inappropriate responses while selecting 
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goal-relevant actions underlies the tendency for individuals high in externalizing to display risky and impulsive 
behavior21,22. Overall, there is substantial evidence that supports the general relationship between neurocognitive 
deficits and risky and impulsive behaviors13,16.

However, much of this evidence is derived from work that measures neurocognition as isolated or separa-
ble subfunctions13,16,22–25, despite evidence that behavior is supported by interactions among neurocognitive 
subfunctions26–28. For example, successful inhibition of responses to irrelevant stimuli (i.e., response inhibition) 
may rely on sustained attention to relevant information (i.e., attention) as well as maintenance of this information 
(i.e., working memory)13. As a result, studies that look at performance on a single task17–22 are unable to account 
for the potential influence of other subfunctions. Similarly, studies that use a battery of tasks26–33 tend to treat 
each task as an independent measure of neurocognition, rather than capturing the interplay among neurocogni-
tive subfunctions that are known to occur within individuals. Thus, it remains to be demonstrated how different 
subfunctions of neurocognition co-occur within individuals and how these may relate to different forms of risky 
and impulsive behavior. For instance, certain subfunctions, either individually or in concert, may be related to 
specific forms of risky and impulsive behavior or might exert stronger influences on behavior in some individuals 
and not in others. Therefore, comprehensively estimating neurocognitive subfunctions, examining their relative 
co-occurrence within individuals, and then specifying their relations to risky and impulsive behaviors might 
allow for a more nuanced representation of who engages in these behaviors and which subfunctions contribute 
to that behavior.

In the present study, we applied a novel Bayesian latent feature model, Indian Buffet Process (IBP), to identify 
individual-specific profiles of co-occurring neurocognitive subfunctions to more precisely characterize their rela-
tionship to risky and impulsive behavior. Briefly, IBP is a Bayesian non-parametric dimension reduction method 
that derives latent features representing patterns of data for each individual34. IBP has been used in cognitive 
science research to build Artificial Intelligence models of images that allow for recognition or classification, or 
to represent generalizable sensory-derived information34–36. A major advantage of IBP is that it derives latent 
features based on patterns seen across the data, including across tasks34,35. Consequently, neurocognition would 
not be described as separable subfunctions of working memory, attention, or inhibition. Instead, neurocognition 
would be described as how an individual distributes the deployment of resources across individual neurocogni-
tive subfunctions to extract the relevant pieces of information across experimental contexts (i.e., contexts that 
involve errors to detect, distracting cues to filter, or important consequences to remember)37.

Data were from the Nathan Kline Institute Rockland Sample. We used a sample that is characterized as neu-
rotypical to test whether IBP could capture the patterns of neurocognition without clearly deficient, or extreme, 
performance. Because risky and impulsive behavior occurs along a continuum, and because it is unlikely that 
categorically “deficient” neurocognition contributes to this behavior, examining both risky behavior and neuro-
cognition within a relatively normative range is a strong test of the application of IBP for extracting potentially 
meaningful variation in cognition and behavior as it relates to risky and impulsive behaviors.

Our analyses reflect a combination of a theory- and data-driven approach to identify relevant relationships 
between neurocognition and risky/impulsive behaviors. First, we applied IBP to 27 measures of neurocogni-
tive function from the Nathan Kline Institute Rockland Sample. The selection of neurocognitive measures was 
based on previous theory and empirical work relevant to risky and impulsive behavior11,12,14–22. Second, we used 
dependent correlations to specify the relationship between the resulting features and different measures of risky/
impulsive behavior. Risky and impulsive behavior can be measured in correlated, but distinct, ways from gen-
eral traits (impulsivity; externalizing) to specific behaviors (substance use). We examined multiple measures of 
risky and impulsive behaviors to explore whether some latent features related to risky and impulsive behaviors 
in general or specific forms.

True to the flexible nature of IBP and following from a data-driven approach, we expected that several latent 
features would emerge from IBP, each representing different patterns of function across the 27 measures. Con-
sistent with prior research, we hypothesized that latent features representing poorer neurocognitive function 
would correlate with more risky and impulsive behaviors relative to features representing better neurocognitive 
functioning. Given that this study presents a novel application of IBP, we did not have specific hypotheses about 
the relationships between additional features and risky/impulsive behaviors.

Methods
Participants.  Participants were adults from the nationally representative Nathan Kline Institute Rockland 
Sample (NKI-RS), a community-ascertained sample recruited from Rockland County, New York; for details on 
recruitment method see Nooner et al.38. All procedures in the present study were approved by the Institutional 
Review Board at the Nathan Kline Institute and were performed in accordance with relevant guidelines. As 
part of the Nathan Kline Institute’s study procedure for this dataset, informed consent was obtained from all 
participants and research was performed in accordance with the Declaration of Helsinki. Among 1488 subjects 
with available phenotypic data as of December 2021, participants between ages 18 and 55 years were included. 
Participants (1) missing data on age or (2) under 18 and over 55 were excluded due to low rates of substance use 
and to constrain analyses to externalizing during young through middle adulthood. No other exclusion criteria 
were applied to the sample. The study sample included 673 participants (Age: 37.03 ± 11.95; 64% Female, 36% 
Male; 67% White, 21% Black, 6% Asian, 4% Other, 1% American Indian/Native Alaskan, 1% Native Hawaiian/
Pacific Islander; 14% Hispanic; < 1% completed junior high school, 1% partially completed high school, 11% 
graduated high school, 36% partially completed college, 29% graduated college or university, 20% completed a 
graduate degree, and 2% were missing data on highest education completed). The Bayesian approach used in our 
analysis does not require a predetermined minimum amount of data to be used or distribution of data39. Rather, 
results are accompanied by estimates of uncertainty, which are conditioned on the available data41. However, 



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11782  | https://doi.org/10.1038/s41598-023-38991-0

www.nature.com/scientificreports/

this sample is larger than other studies using NKI-RS data to investigate risky and impulsive behavior, including 
substance use40.

Measures.  Neurocognitive functioning.  To capture a broad array of neurocognitive functioning across sub-
functions and modalities, we used behavioral data from 27 neurocognitive tasks included in the Nathan Kline 
Institute battery. As our aim was not to validate separate neurocognitive batteries, we selected measures that 
reflected overlapping subfunctions (e.g., error detection in planning, inhibition, and cognitive control) while 
limiting redundancy (e.g., selecting one measure of working memory in which sequences of characters are re-
peated). Neurocognitive tasks were administered via paper and pencil or computer38. Correlations across sample 
demographics and neurocognitive measures are provided in Fig. S1a.

Delis–Kaplan Executive Function System.  The Delis–Kaplan Executive Function System (D-KEFS) is a nation-
ally standardized and age-normed battery of nine standalone tests that evaluate key subfunctions of executive 
functioning (e.g., planning, inhibition, cognitive flexibility, working memory)42. The nine D-KEFS tests meas-
ure verbal and non-verbal executive functions43. A variety of age-normed primary scores, contrast scores, and 
cumulative percentile ranks are provided for each test, with higher values reflecting better performance. D-KEFS 
tests demonstrate moderate test–retest reliability, consistent with other measures of executive functioning42,44. 
We considered tests containing over 50% complete data and selected scores corresponding to a variety of neuro-
cognitive subfunctions (e.g., cognitive flexibility in the visual and verbal modalities; Table 1).

Attention Network Test.  The Attention Network Test (ANT) is a computerized task developed to assess three 
components of attention: alerting (the ability to achieve and maintain an attentive state), orienting (the ability to 
select relevant information from sensory inputs), and executive attention (the ability to resolve conflict among 

Table 1.   Summary of neurocognitive tests used in the present study. All neurocognitive task scores were 
standardized (z-score) prior to inclusion in the Indian Buffet Process dimension reduction procedure.

Test Neurocognitive subfunction Score used

Delis–Kaplan Executive Function System

 Twenty Questions Abstract categorization, visual attention, and perception Total Questions Asked

 Design Fluency Cognitive flexibility and inhibition in the visual and motor 
modalities Total Correct

 Proverb Verbal abstraction Total Achievement

 Tower
Spatial planning and rule learning Total Achievement

Spatial planning and error detection as relevant to planning Rule Violations Per Item Ratio

 Trail-Making
Attention Number Sequencing

Cognitive flexibility in the visual modalitiy Number-Letter Switching

 Verbal Fluency Cognitive flexibility in the verbal modality Category Switching

 Color-Word Interference Test

Inhibition adjusted for basic naming skills Inhibition-Color Naming

Cognitive flexibility adjusted for basic naming skills Inhibition/Switching-Color Naming

Error detection related to inhibition Inhibition uncorrected error

Error detection related to cognitive control Inhibition/Switching uncorrected error

Attention Network Test

 Alerting, orienting, and executive attention Three components of attention and inhibition Time-based efficiency scores for alerting, orienting and executive 
attention

Penn Computerized Neurocognitive Battery

 Mouse Practice Test Sensorimotor processing speed Efficiency score

 Continuous Performance Test Sustained attention Efficiency score

 Conditional Exclusion Test Abstraction and cognitive flexibility Efficiency score

 Emotion Differentiation Social cognition Efficiency score

 Emotion Identification Social cognition Efficiency score

 Word Memory Test Episodic memory in the verbal modality  Efficiency score

 Visual Object Learning Test Episodic memory in the spatial modality Efficiency score

 Verbal Reasoning Test Language reasoning Efficiency score

 Finger Tapping Test Sensorimotor processing speed Sum score for mean dominant hand and non-dominant hand taps

Digit Span

 Digit Forwards Attention and working memory Raw score for longest length forward

 Digit Backwards Working memory Raw score for longest length backwards

Rey Auditory Verbal Learning Test

 Delayed Recall Learning and memory Total correct scores
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responses, i.e., distractor stimuli)45. To tap these components of attention, the ANT makes use of alerting cues, 
spatial cues, and flanker arrows adapted from the widely-used Posner cueing task and Eriksen flanker task46. 
The ANT demonstrates acceptable reliability45. Scores from the ANT were reverse scored so that higher scores 
reflected better performance (Table 1).

Penn Computerized Neurocognitive Battery.  The Penn Computerized Neurocognitive Battery (CNB) is a bat-
tery of 14 tests that provides estimates of efficiency (accuracy proportional to speed) across nine subfunctions of 
neurocognition: abstraction, attention, cognitive flexibility, emotion identification, episodic memory, language, 
sensorimotor speed, spatial processing, and working memory47. Derived from functional neuroimaging tasks, 
CNB measures of functioning across these subfunctions have been linked to specific brain systems. The CNB 
demonstrates moderate to high internal consistency (Cronbach’s αs = 0.55 to 0.98), validity, and moderate to 
high reliability48,49. Of the eleven available tests, we selected eight containing over 50% complete data and assess-
ing subfunctions besides those assessed in D-KEFS (Table 1). In line with previous research, scores on the CNB 
Finger Tapping task that were fewer than 10 taps or more than 151 taps (n = 22) were replaced as missing, as they 
likely reflected technical issues (e.g., scores capture the average number of taps across five 10-s periods combined 
from both dominant and non-dominant hands)50.

Digit Span.  Digit Span is a subtest of the nationally standardized and age-normed Weschler Adult Intelligence 
Scale-Revised (WAIS-R)51. Digit Span is used to assess attention and working memory, measured through the 
ability to recall strings of verbally presented numbers in the same order (Digit Forwards) and in backwards order 
(Digit Backwards; Table 1). Digit Forwards and Digit Backwards scores indicate acceptable split-half reliability 
(Cronbach’s α = 0.82 and 0.83, respectively)52.

Rey Auditory Verbal Learning Test.  The Rey Auditory Verbal Learning Test (RAVLT) is a neuropsychological 
test that assesses learning and memory53. Immediate and delayed memory are captured through immediate and 
delayed (after 20 min) recall of all items remembered from 15-item word lists verbally presented over 5 trials 
(Table 1). RAVLT scores demonstrate acceptable internal consistency (Cronbach’s α = 0.80) and test–retest reli-
ability (summed trials r = 0.68)54.

Risky/impulsive behavior and substance use outcomes.  Risky and impulsive behavior, as well as substance use 
patterns, were estimated using personality, behavior, and clinical screening tools38. See Fig. S2 for outcome meas-
ure distributions.

UPPS‑P Impulsive Behavior Scale.  The UPPS-P is a 59-item self-report questionnaire assessing the tendency 
to engage in impulsive behavior under five conditions: Positive Urgency, Negative Urgency, Lack of Premedita-
tion, Lack of Perseverance, and Sensation Seeking20. For each item, participants consider their behavior in the 
past 6 months and indicate whether they Agree Strongly (1), Agree Some (2), Disagree Some (3), or Disagree 
Strongly (4). Scores for each subscale are summed, such that higher scores indicate greater impulsivity.

Achenbach System of Empirically Based Assessment Adult Self Report.  The Adult Self Report (ASR) is a 126-
item self-report questionnaire that assesses behavior problems in adults (ages 18–59)55. The ASR has been stand-
ardized and provides t-scores for a variety of subscales nationally normed by age and sex. Here, the externalizing 
t-score was used to estimate aggressive, rule-breaking, and intrusive behavior, with higher scores indicating 
more externalizing behavior.

Comprehensive Addiction Severity Index.  The Comprehensive Addiction Severity Index—Alcohol and Other 
Drugs (CASI-AOD) module was administered to participants ages 13–85 years old56. The CASI is an interview-
based screening tool with modules spanning areas of functioning such as general health, mental health, and use 
of alcohol and other drugs. The CASI-AOD assesses multiple aspects of substance use (i.e., age of first use, use 
frequency in the past month) for several categories of drugs. In the present study, typical and peak use patterns 
in the past year as well as use frequency in the past month for alcohol, cannabis, and tobacco were used to char-
acterize substance use patterns, with higher scores indicating greater use.

National Institute on Drug Abuse Quick Screen.  The National Institute on Drug Abuse (NIDA) Quick Screen 
V1.0. is a brief 8-item self-report questionnaire assessing use and negative consequences stemming from use of 
a variety of substances57. Items for each substance are summed into Substance Involvement scores reflecting the 
level of risk for substance use disorder associated with each substance. Scores ranging from 0 to 3 reflect low risk, 
scores 4–26 reflect moderate risk, and scores above 27 reflect high risk. Here, Substance Involvement scores for 
alcohol, cannabis, and tobacco were used to characterize substance use problems.

Data analysis.  Indian Buffet Process.  We used the Indian Buffet Process (IBP) to reduce the 27 neurocog-
nitive variables of interest into combinations of latent features via the open-source Python Indian Buffet Process 
package (PyIBP)58. IBP has advantages over other analytic techniques used in research on risky and impulsive 
behaviors for two reasons. First, IBP addresses the “correct number” problem. The analytic approaches typically 
used to characterize neurocognition in relation to risky and impulsive behavior require specifying a “correct 
number” of parameters beforehand (e.g., single predictors in a typical regression or factors/classes of neurocog-
nitive functions) so that the model can converge or can be selected34. Bayesian non-parametric models offer one 
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solution to the problem of “correct numbers” by drawing a subset of parameters (factors, classes, functions) from 
an infinite-dimensional parameter space, which allows for flexibility in the number of parameters of interest. 
IBP, for example, determines the number of latent features based on the conditional distribution of latent (un-
observable) features given the observed data, which allows the number of features to grow or shrink depending 
on the observed data. Here, conditioning the number of features on the observed data provides a flexible model 
of neurocognitive function that captures subtle variability across tasks in features that may have otherwise been 
collapsed together. Second, as previously mentioned, IBP extracts latent features based on patterns seen across 
the data, including across tasks that span various modalities and subfunctions34,35,37. Consequently, neurocog-
nition is not estimated as separable subfunctions, but rather as co-occuring subfunctions within individuals. 
Altogether, IBP presents an opportunity to represent patterns of neurocognitive function in latent features, while 
preserving variability for each individual.

IBP can be described with the following culinary metaphor. Imagine that N customers (observations) sequen-
tially enter a buffet with an infinite number of dishes (features). The first customer samples Poisson(α) number 
of dishes during their first sweep of the buffet. Each following ith customer samples the previously sampled 
dishes with a probability proportional to its existing popularity ( 

(

mk

i

)

 , where mk is the number of previous cus-
tomers who already sampled dish k and i is the number of customers so far), and samples new (i.e., previously 
unsampled) dishes with probability Poisson 

(

α

i

)

 . In the resulting solution, K independent latent features (i.e., 
dishes) are responsible for generating (i.e., are sampled by) N observations (i.e., customers’ observed data), with 
flexibility. That is, sampling one latent feature does not inform whether an observation samples another latent 
feature, and the number of latent features will grow or shrink to reflect the data. The concentration parameter 
α governs the number of features sampled and the likelihood that observations will share the same features, 
such that larger values of α result in more features being sampled and shared. We used a variant of the IBP that 
models uncertainty regarding the number of features sampled, in which continuous values (rather than binary) 
represent the extent to which each feature is sampled.

The PyIBP package utilizes accelerated Gibbs sampling for a linear Gaussian model, which assumes that the 
observed data is drawn from a normal distribution. Because the Gibbs sampler accounts for missing data (i.e., 
removing data points from the posterior mean to determine their influence on the sampled latent features), we 
did not impute or exclude missing data. Completeness for each of the 27 neurocognitive variables, impulsive 
behavior, and substance use outcomes is documented in Table S1. The Gibbs sampling procedure also helps the 
model converge with fewer iterations36,41.

In the present study, the N observations are the 673 participants. Scores from the 27 neurocognitive measures 
spanning subfunctions and modalities of neurocognitive function were z-scored prior to the initiation of IBP. 
The resulting solution offers K latent features that represent patterns of performance seen across these data. 
Specificity is retained for each participant through the unique combination of sampled latent features (influenced 
by the concentration parameter α), and the extent to which each latent feature is sampled (i.e., their modeled 
uncertainty). Therefore, IBP provides a novel approach of identifying overall patterns (represented by features) 
across measures and extracting variability in those patterns to identify how individuals may engage neurocog-
nitive functions. The concentration parameter α was initialized at five. For each participant, we extracted the 
continuous feature values corresponding to their unique combination of sampled latent features (K) present in 
the final iteration, where higher values indicate greater expression of a feature. With IBP, individuals may sam-
ple multiple features, allowing individuals to vary in their combinations of features. ANOVAs and Chi-Square 
tests of independence assessed whether the feature membership differed in terms of age, sex, or race/ethnicity.

Dependent correlations.  Continuous feature value correlation analyses were conducted to assess how each latent 
feature—representing patterns of neurocognitive function—related to risky/impulsive behavior and substance 
use outcomes. Pearson correlations were performed in R version 4.1.1 to probe the relationship between feature 
values and outcomes59. Differences in the magnitude of correlations between feature values and outcomes were 
assessed using tests of dependent correlations performed via the R package cocor60–62. Tests of dependent correla-
tions accounted for the potential overlap captured by the continuous feature value (i.e., probability that someone 
sampled a given latent feature and individuals could sample multiple latent features). Bonferroni correction 
accounted for the number of measures used to assess risky/impulsive behavior (n = 2) and substance use (n = 4).

Results
Latent features represent neurocognitive patterns.  Traceplots demonstrated model convergence at 
10 iterations (Fig. S3). K, the number of latent features, oscillated between 22 and 23 and stabilized at 22; the 
concentration parameter α remained between 1.7 and 2.3 and stabilized at 1.7; σX (the variance of the observed 
data) stabilized at 0.9; σA (the variance of the posterior mean weights) stabilized at 0.4. Feature sampling counts 
are detailed in Table S2.

Though the resulting latent features are individually informative, it is difficult to extract generalizable group 
conclusions from features with few individuals (i.e., one or two). In line with previous work63,64, we only examined 
features with counts of at least 5% of the total sample size to appropriately represent how participants sampled 
features. Therefore, we selected features with at least 33 people to examine in the analyses. Five features met 
this criterion: (i) One feature was characterized by relatively poorer attention; (ii) one feature was characterized 
by relatively poorer functioning across neurocognitive subfunctions, particularly working memory; (iii) one 
feature captured average functioning across neurocognitive subfunctions; (iv) one feature was characterized 
by poorer episodic memory and emotion identification; and (v) one feature captured a variety of functioning, 
including poorer abstraction and episodic memory but better cognitive flexibility and error detection (Fig. 1; 
z-score means and standard errors are detailed in Table S3). Feature membership did not differ based on age, 
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sex, or race/ethnicity, all ps > 0.1. See Table S4 for multi-feature sampling counts and descriptions. Finally, see 
Supplemental Material for follow-up analyses indicating that the neurocognitive patterns presented here held 
when IBP was applied to half the sample.

Relationships between neurocognitive functioning, impulsive behavior, and substance 
use.  Relationships among feature values and outcomes are detailed in Table 2 and summarized in Figs. 2 and 
3 (see Fig. S1b for zero-order correlations among single neurocognitive variables and outcomes).

Dependent correlations with risky/impulsive behavior outcomes.  The feature characterized by poorer neuro-
cognitive functioning (particularly working memory) correlated with increased impulsivity in affective cir-
cumstances (UPPS-Negative Urgency, UPPS-Positive Urgency). Specifically, the poorer overall neurocognitive 
functioning feature positively correlated with UPPS-Negative Urgency relative to the feature characterized by 
mixed neurocognitive functioning, as well as UPPS-Positive Urgency relative to the average feature, the feature 
characterized by poorer episodic memory and emotion identification, and the feature characterized by mixed 
neurocognitive functioning.

Additionally, the feature characterized by poorer episodic memory and emotion identification correlated with 
increased ASR-externalizing and UPPS-Sensation Seeking relative to the average feature. The feature character-
ized by poorer attention correlated with increased ASR-externalizing relative to the average feature and feature 
characterized by mixed functioning. Additionally, this feature was associated with increased UPPS-Negative 
Urgency but decreased UPPS-Positive Urgency relative to the feature characterized by mixed functioning.

Lastly, the feature characterized by mixed neurocognitive functioning correlated with increased UPPS-Sen-
sation Seeking relative to the average feature. See Fig. S4 and Table S5 for analyses with internalizing t-score.

Dependent correlations with substance use outcomes.  The feature characterized by poorer neurocognitive func-
tioning (particularly working memory) correlated with increased CASI-AOD past-month, CASI-AOD peak, 

Figure 1.   Neurocognitive patterns represented by latent features. Mean z-score and counts for each of 
the 27 neurocognitive measures across individuals who sampled each latent feature. Individual measures 
corresponding to each subfunction, ordered left to right, are as follows: Abstraction (D-KEFS Twenty Questions: 
Total Questions Asked; D-KEFS Proverb: Total Achievement; CNB Conditional Exclusion Test: Efficiency), 
attention (ANT Alert Efficiency; ANT Orienting Efficiency; Digit Span Forward Longest Length; D-KEFS Trail-
Making: Number Sequencing; CNB Continuous Performance Test: Efficiency), cognitive flexibility (D-KEFS 
Color-Word Interference: Inhibition/Switching-Color Naming; D-KEFS Design Fluency: Total Correct; D-KEFS 
Trail-Making Test: Number-Letter Switching; D-KEFS Verbal Fluency: Category Switching), emotion (CNB 
Emotion Differentiation: Efficiency; CNB Emotion Recognition: Efficiency), episodic memory (CNB Word 
Memory: Efficiency; CNB Visual Object Learning Test: Efficiency), error detection (D-KEFS Color-Word 
Interference: Inhibition Total Errors Uncorrected; D-KEFS Color-Word Interference: Inhibition/Switching Total 
Uncorrected Errors; D-KEFS Tower: Rule Violations Per Item), inhibition (ANT Executive Attention Efficiency; 
D-KEFS Color-Word Interference: Inhibition-Color Naming), language (CNB Verbal Reasoning: Efficiency), 
planning (D-KEFS Tower: Total Achievement), sensorimotor speed (CNB Mouse Practice: Efficiency; 
CNB Finger Tapping: Total Taps), working memory (Digit Span Backwards Longest Length; RAVLT Delay 
Total Correct). D-KEFS Delis-Kaplan Executive Function System, ANT Attention Network Test, CNB Penn 
Computerized Neurocognitive Battery, RAVLT Rey Auditory Verbal Learning Test.
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and CASI-AOD typical cannabis use relative to the feature characterized by mixed neurocognitive functioning. 
Additionally, the poorer neurocognitive functioning feature was associated with increased CASI-AOD past-
month, peak and CASI-AOD typical tobacco use relative to the average feature. Finally, the poorer neurocogni-
tive functioning feature correlated with increased NIDA Quick Screen problem use of cannabis relative to the 
feature characterized by mixed neurocognitive functioning.

The other four features (poorer attention; average; poorer episodic memory and emotion identification; 
mixed) generally demonstrated negative associations across cannabis and tobacco use outcomes.

Discussion
Substantial research links neurocognitive deficits to risky and impulsive behaviors. However, previous work has 
been limited by the use of data and analytic tools that assume subfunctions of neurocognition are separate con-
structs, ultimately limiting our understanding of neurocognition as it operates within individuals and informs 
their behavior. The present study extends our understanding of neurocognitive function as it relates to risky and 

Table 2.   Results of dependent correlations with continuous feature values, risky/impulsive behavior, and 
substance use outcomes. CASI-AOD Comprehensive Addiction Severity Index—Alcohol and Other Drugs, 
NIDA National Institute on Drug Abuse.

Outcome measure
Poorer attention
1

Poorer all (especially working 
memory)
2

Average
3

Poorer episodic memory and 
emotion
4

Mixed
5 Correlation comparison p

Impulsive behavior outcomes

 Adult Self-Report

  Externalizing 0.10 0.02  − 0.04 0.08  − 0.04

1 vs. 3 0.007

1 vs. 5 0.02

4 vs. 3 0.02

 UPPS-P

  Lack of Perseverance 0.03 0.01 0.04  − 0.005  − 0.06 – –

  Lack of Premeditation 0.08  − 0.03  − 0.01 0.01  − 0.03 – –

  Negative Urgency 0.05 0.04  − 0.01  − 0.01  − 0.09
1 vs. 5 0.01

2 vs. 5 0.01

  Positive Urgency  − 0.03 0.09  − 0.09  − 0.15  − 0.15

1 vs. 5 0.02

2 vs. 3 0.002

2 vs. 4  < 0.001

2 vs. 5  < 0.001

  Sensation Seeking  − 0.04  − 0.04  − 0.12 0.08 0.03
4 vs. 3  < 0.001

5 vs. 3 0.01

Substance use outcomes

 CASI-AOD

  Past Month Use

   Alcohol 0.08  − 0.01 0.02 0.04 0.08 – –

   Cannabis  − 0.06 0.09  − 0.01  − 0.05  − 0.10 2 vs. 5 0.001

   Tobacco  − 0.10 0.13  − 0.15  − 0.08  − 0.05

2 vs. 1 0.002

2 vs. 3  < 0.001

2 vs. 4 0.005

 Peak Use

  Alcohol 0.10 0.02 0.03 0.08 0.07 – –

  Cannabis  − 0.08 0.07  − 0.08 0.01  − 0.11 2 vs. 5 0.012

  Tobacco  − 0.08 0.10  − 0.14 0.01  − 0.04 2 vs. 3 0.002

 Typical Use

  Alcohol 0.09 0.02 0.01 0.04 0.06 – –

  Cannabis  − 0.10 0.09  − 0.10  − 0.04  − 0.11

2 vs. 1 0.008

2 vs. 3 0.006

2 vs. 5 0.005

  Tobacco  − 0.11 0.13  − 0.17  − 0.04  − 0.05
2 vs. 1 0.001

2 vs. 3  < 0.001

 NIDA Quick Screen

  Alcohol 0.03  − 0.08 0.05 0.01 0.07 – –

  Cannabis  − 0.05 0.10  − 0.02  − 0.002  − 0.12 2 vs. 5  < 0.001
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Figure 2.   Results of dependent correlations with continuous feature values and risky/impulsive behavior 
outcomes. Bar plots showing correlation coefficient magnitudes for the relationship between continuous values 
for the five most populous features and risky/impulsive behavior outcomes.

Figure 3.   Results of dependent correlations with continuous feature values and substance use outcomes. Bar 
plots showing correlation coefficient magnitudes for the relationship between continuous values for the five 
most populous features and substance use outcomes. CASI-AOD Comprehensive Addiction Severity Index—
Alcohol and Other Drugs, NIDA National Institute on Drug Abuse.
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impulsive behaviors via a novel application of a Bayesian non-parametric latent feature learning method—IBP—
to multiple neurocognitive tasks in a neurotypical sample. We showed that IBP estimates individual variability 
across and within subfunctions of neurocognition and that the resulting features meaningfully related to risky 
and impulsive behaviors. These within-individual features more precisely captured the association between 
cognition and behavior than the use of single measures from different neurocognitive tasks or the use of latent 
profile analysis (see Supplemental Materials for comparison analyses). Together, the present results suggest that 
variations in neurocognition, even within a relatively normative range, can be estimated. Further, these subtle 
variations meaningfully relate to real-world behaviors, even if those behaviors are not extreme or reflective of 
pathological behavior.

Different patterns of neurocognitive function were represented across the five IBP-derived features. Unsur-
prisingly, based on the present sample being drawn from a more neurotypical population, the most common 
feature was one that captures relatively average neurocognitive functioning across tasks. Four other features 
varied subtly in their relative neurocognitive function. Although the range of these relative variations were 
considered normative (i.e., within one standard deviation of the mean), our findings show that the IBP offers a 
sensitive approach to capturing nuances in neurocognitive functioning. In the present study, individuals best 
characterized by the average feature may have engaged all subfunctions of neurocognition when encountering 
information, supporting appropriate planning, organizing, and updating of behavior across experimental con-
texts. Other individuals, such as those represented by the feature characterized by relatively poorer functioning 
(particularly working memory), may have relied more heavily on non-verbal cues when attending to informa-
tion, identifying errors, or representing and retrieving information from memory. Such reliance may contribute 
to variation in performance across language-based tasks (e.g., poorer performance on the D-KEFS Color-Word 
Interference, but no relative difficulty on D-KEFS Design Fluency). Thus, the application of IBP to a variety of 
neurocognitive tasks furthers our understanding of how neurocognitive function operates within individuals by 
richly capturing variability in how individuals engage with content (e.g., types of information) across contexts 
(e.g., different tasks).

The IBP-derived features showed associations with general and specific forms of risky and impulsive behav-
iors. The direct estimation of neurocognitive functioning across tasks and the relation to different subtypes of 
risky and impulsive behaviors within the same person and sample is a notable advance of the present approach 
over previous work. The feature characterized by poorer neurocognitive functioning in general (especially work-
ing memory) correlated with increased impulsivity in affective circumstances (i.e., positive and negative urgency), 
substance use patterns (i.e., past month, peak, and typical use), and substance use problems. These results are 
consistent with previous research noting relationships among poorer working memory, error detection, and 
inhibition and substance use problems65, substance use disorders66, as well as impulsive behavior in affective 
circumstances23. Such findings indicate that information critical for regulated behaviors may not be adequately 
processed or represented for some individuals, contributing to risky and impulsive behavior. In contrast, the 
feature characterized by poorer episodic memory and emotion correlated with greater trait externalizing and 
sensation-seeking and decreased positive urgency. Difficulty with contextualized memory and in interpreting 
social cues may lead to misperceptions of risk or consequence, contributing to increased impulsive behaviors 
broadly67–69. The feature characterized by poorer attention correlated with increased trait externalizing and nega-
tive urgency, as well as decreased positive urgency and substance use (see also Morris 2014)70,71. This relationship 
may suggest that relative difficulty shifting attention may leave individuals more susceptible to the salience of 
negative emotions and lead to generally dysregulated behavior72. Finally, the features characterized by average 
or mixed neurocognition demonstrated largely negative correlations with risky and impulsive outcomes, sug-
gesting that neurocognitive patterns that displayed more average or distributed differences were not as relevant 
for risky and impulsive outcomes.

Together, variability in how individuals process and represent information appears to be important for specific 
expressions of risky and impulsive behaviors. Further, the difficulties in neurocognition need not be extreme to 
meaningfully relate to risky and impulsive behaviors. The specificity with which IBP can parse neurocognitive 
function is important because it allows us to clarify how relative variability across subfunctions may inform 
different expressions of risky and impulsive behaviors.

Several limitations of the present study should be noted. First, though a strength of IBP is its ability to retain 
individual variability in neurocognitive patterns through combinations of continuously valued features, it is 
possible that these combinations are too individual-specific to yield generalizable conclusions. Several features 
(Table S2) were sampled by one or two individuals and thus could not be used in aggregate analyses. It is possible 
that this individual variability really could be noise. Other analytic approaches may address noise by collapsing 
factors, exaggerating differences between latent profiles, or adopting hierarchical modeling frameworks. With 
IBP, noise may be captured in infrequently sampled features. To address whether such infrequently sampled 
features constitute noise or meaningful information, future research can utilize all features in a predictive frame-
work (e.g., machine learning; longitudinal data)73,74. Second, while a strength of IBP is its flexibility—that is, the 
method is designed to adaptively characterize the data in hand—further work is needed to explore the stability 
of these neurocognitive features (see Supplemental Material for evidence of stability in the present sample) 
and the generalizability of the identified latent features for other data types and samples. Finally, and relatedly, 
the sample used for the present study was considered a “healthy” sample. The restricted range of scores might 
have limited the ability to identify potentially more clinically meaningful effects. It will be important to test the 
boundaries of applying IBP to neurocognitive data by examining its validity in clinical samples or samples that 
show more extreme atypicalities in neurocognitive functioning. However, our findings highlight the potential 
of this novel approach for studying neurocognitive dysfunction in populations that engage in more severe forms 
of impulsive and risky behavior.
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The present study showed that IBP captured nuanced patterns of functioning across subfunctions of neuro-
cognition and that these patterns differentially correlated with risky and impulsive behaviors. In the real world, 
it is not just people with substantial deficits in neurocognition that engage in risky and impulsive behaviors. 
Estimating neurotypical variation in neurocognition is crucial to providing a better understanding of its influ-
ence across a continuum of risky and impulsive behaviors.

Data availability
Data from the Nathan Kline Institute Rockland Sample may be accessed after completing a Data Use Agreement 
(DUA). Full steps for completing the DUA, accessing and downloading data are detailed here; https://​fcon_​1000.​
proje​cts.​nitrc.​org/​indi/​enhan​ced/​pheno​typic​data.​html.
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