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A B S T R A C T
IMPLICATIONS AND
Purpose: Pediatric obesity is a growing public health concern. Previous work has observed diet to
impact nucleus accumbens (NAcc) inflammation in rodents, measured by the reactive proliferation
of glial cells. Recent work in humans has demonstrated a relationship between NAcc cell densityd
a proxy for neuroinflammationdand weight gain in youth; however, the directionality of this
relationship in the developing brain and association with diet remains unknown.
Methods: Waist circumference (WC) and NAcc cell density were collected in a large cohort of chil-
dren (n> 2,000) participating in the Adolescent Brain Cognitive Development (ABCD) Study (release
3.0) at baseline (9e10 y) and at a Year 2 follow-up (11e12 y). Latent change score modeling (LCSM)
was used to disentangle contributions of baseline measures to two-year changes in WC percentile
and NAcc cellularity. In addition, the role of NAcc cellularity in mediating the relationship between
diet and WC percentile was assessed using dietary intake data collected at Year 2.
Results: LCSM indicates that baseline WC percentile influences change in NAcc cellularity and that
baseline NAcc cell density influences change in WC percentile. NAcc cellularity was significantly
associated with WC percentile at Year 2 and mediated the relationship between dietary fat con-
sumption and WC percentile.
Conclusions: These results implicate a vicious cycle whereby NAcc cell density biases longitudinal
changes in WC percentile and vice versa. Moreover, NAcc cell density may mediate the relationship
between diet and weight gain in youth. These findings suggest that diet-induced inflammation of
reward circuitry may lead to behavioral changes that further contribute to weight gain.
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More than 18% of youth and 39% of adults are overweight or
obese worldwide [1]. Obesity increases the risk of several phys-
ical illnesses such as hypertension, type 2 diabetes, coronary
heart disease, stroke, cancer, and mortality [2]. Childhood over-
weight and obesity is a strong predictor of obesity later in life [3]
and has been linked to anxiety, depression, lower self-esteem,
and lower self-reported quality of life [4]. Given the high prev-
alence and serious physical and mental health consequences,
studies have sought to understand the biological risk factors
underlying the development of obesity; however, the neurobio-
logical mechanisms leading to excessive weight gain and obesity
in youth remain less well understood.

The mesolimbic dopaminergic pathway, which includes the
nucleus accumbens (NAcc) [5], is necessary for motivated
behavior [6], such as eating behavior. Previous work has
observed varying relationships between obesity-related metrics
and NAcc structure and function. For example, NAcc volume is
positively associated with genetic risk for obesity in children [7],
as well as with body mass index (BMI) and percent body fatda
relationship that may be age-dependent and specific to youth
[8,9]. Moreover, NAcc blood oxygen level-dependent (BOLD) re-
sponses to reward cues have demonstrated associations with
obesity-related behaviors and outcomes (i.e., eating behavior,
weight gain) in adolescents and adults [10e13], although find-
ings are mixed and may be dependent on additional factors [14],
such as the type of reward cue (e.g., monetary reward; food
reward) [15,16], stimulus type (e.g., visual gustatory) [17], and
metabolic factors (e.g., insulin sensitivity) [18]. Despite a clear
role of the NAcc in reward motivation more generally, the asso-
ciations between this region and obesity-related behaviors and
outcomes appear to be complex and dependent on a variety of
factors.

Animal models of diet-induced obesity have revealed micro-
structural differences in the NAcc indicative of neuro-
inflammation [19e21]. NAcc inflammationdmeasured by an
increase in glial cells responding to proinflammatory factors and
upregulation of proinflammatory genesdhas been associated
with highly palatable, caloric diets in rodents [20,21], and more
specifically, has been linked to a high saturated fat diet and
visceral fat accumulation in mice [19]. Critically, diet-induced
NAcc inflammation has been shown to modify subsequent
eating behavior in rodents, and reducing this inflammation
through intervention has been shown to revert increased con-
sumption of highly palatable foods, consequently reverting diet-
induced weight gain [19,20]. This work, taken together, suggests
that diet, and the consumption of highly palatable foods in
particular, plays a crucial role in driving NAcc inflammation,
which may, in turn, promote further unhealthy eating behavior
and subsequent weight gain.

Detecting neuroinflammation via reactive gliosis in vivo
presents a challenge in the human brain. However, recent
methods allow researchers to provide an index of cell density in
the brain using magnetic resonance imaging (MRI). More spe-
cifically, restriction spectrum imaging (RSI) is a noninvasive im-
aging technique based on diffusion MRI that separates signal
contributions from intracellular (restricted) diffusion and extra-
cellular (hindered) diffusion [22,23]. RSI provides histologically
validated measures of cell density in subcortical brain structures
[23]. Coupled with behavioral and cellular-level evidence from
experiments conducted in animals, RSI may offer complemen-
tary insight into microscale properties in the human NAcc
associated with diet and weight gain in youth. For example, RSI
has been used to identify a relationship between individual dif-
ferences in NAcc cell density and weight gain after one year in
children [24], whichmay indicate diet-induced variability in glial
cell density akin to those observed in animal models of obesity.
Although this study demonstrates an association between NAcc
cell density and weight gain across individuals, the extent to
which weight gain contributes todor reciprocally influencesd
changes in NAcc cellularity within an individual remains an open
question. Moreover, the influence of diet on NAcc cellularity in
humans remains untested.

Here we leverage longitudinal modeling in a large cohort of
youth to examine directional relationships between two-year
changes in NAcc cellularity and weight-related anthropomet-
rics. BMI is a widely used index of body size and provides a
clinical standard for classifying individuals according to physical
thresholds (i.e., underweight, healthy weight, overweight, or
obese) and according to normed growth charts in youth (e.g., BMI
percentile). Although BMI percentile provides an important
clinical metric for evaluating an individual’s body size relative to
the general population, recent discussions have highlighted po-
tential limitations of relying on this technique [25]. Relative to
BMI, waist circumference (WC) may be more informative for
estimating body fat and fat gain in youth [26] and may provide a
better indicator of early risk for negative health outcomes such as
cardiovascular disease and metabolic dysfunction [27,28],
particularly when normed according to age and sex [28].

Longitudinal changes in WC percentile and RSI were evalu-
ated using latent change score modeling (LCSM). LCSM takes
advantage of the strengths of structural equation modeling
(SEM) to estimate cross-domain couplingdor the contributions
of baseline measurements on changes in longitudinal data
[29,30]. By explicitly specifying change scores as latent variables,
LCSM allows for evaluating individual differences in intra-
individual change across time points [29] and has been proposed
to provide a powerful and flexible framework for understanding
dynamic processes between brain and behavior underlying
development [30].

Based on animalmodels demonstrating a vicious cycle of diet-
induced inflammation of the NAcc followed by further unhealthy
eating and weight gain [19,20], we hypothesized that NAcc
cellularity and WC percentile would mutually influence each
other. In other words, we expected NAcc cell density at baseline
to predict two-year change in WC percentile and WC percentile
at baseline to predict two-year change in NAcc cell density. Given
the role of diet in driving neuroinflammation in animalmodels of
obesity, we additionally hypothesized that NAcc cellularity
would mediate the relationship between fatty diet and WC
percentile in youth.

Methods

Data source

The Adolescent Brain Cognitive Development℠ (ABCD) Study
is an ongoing longitudinal study of brain development and child
health in the United States, following over 11,000 9e10-year-olds
through adolescence [31]. The baseline cohort was recruited
from 21 sites using a rigorous epidemiologically informed
school-based sampling and recruitment strategy, with the
objective of approximating the demographic and socioeconomic



Table 1
Participant demographics

Measurement Baseline Year 2

Waist circumference (%ile) 59.56 (28.88) 62.04 (28.05)
Body Mass Index (%ile) 58.44 (30.52) 60.95 (30.60)
Underweight (%) 4.03 3.78
Healthy weight 68.71 65.14
Overweight 13.46 15.35
Obese 13.80 15.73

NAcc cellularity 0.21 (0.02) 0.22 (0.02)
NAcc volume (cm3) 5.80 (.88) 5.76 (.88)
Head motion (mm) 1.29 (.52) 1.16 (.44)
Age (yrs) 9.97 (.61) 11.96 (.63)
Sex (%F) 44.62 e

Puberty (stage)
Prepuberty 54.35% 22.54%
Early puberty 23.23% 26.07%
Mid puberty 21.69% 33.64%
Late puberty 0.73% 17.75%

Race/ethnicity (%)
White 64.63
Black 10.89 e

Hispanic 16.12 e

Asian 0.69 e

Other 7.67 e

Parent marital status (%M) 73.89 e

Parent income (%) e

< $50,000 24.13 e

$50,000 to $100,000 32.23 e

> $100,000 43.63 e

Parent education (%) e

No high school diploma 2.10 e

High school diploma or GED 5.14 e

Some college 25.42 e

Bachelor’s degree 30.78 e

Postgraduate degree 36.56 e

Dietary fat (g) e 49.90 (21.80)
Dietary carbohydrates (g) e 142.08 (55.14)
Dietary protein (g) e 50.76 (21.48)
Dietary fiber (g) e 10.36 (4.58)
Dietary caloric intake (kcal) e 120.32 (46.85)

Descriptive statistics for all variables of interest and covariates collected during
baseline and/or Year 2. Values represent mean (s.d.) unless specified otherwise.
Genetic ancestry scores were utilized for all analyses, but self-report race and
ethnicity data are included here for ease of interpretability.
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diversity of the U.S. population [32]. Data is collected from con-
senting parents and assenting children through yearly multi-
modal assessments, including environmental, behavioral,
physical health, and neurocognitive measuresdas well as bien-
nial structural and functional MRI scans. ABCD Study recruit-
ment, sample selection, complete battery of assessments, study
design, and data collection are detailed elsewhere [33]. Study-
wide exclusion criteria for enrollment included a diagnosis of
moderate to severe autism spectrum disorder, schizophrenia,
moderate to severe intellectual disability, major neurological
disorders, or a substance use disorder at recruitment. Children
with noncorrectable vision, hearing, or sensorimotor impair-
ments, gestational age less than 28 weeks, birth weight less than
1.2 kg, birth complications requiring more than a 1-month hos-
pitalization, history of traumatic brain injury, and standard MRI
contraindications (e.g., implanted metals, claustrophobia,
orthodonture) were also excluded. All study procedures were
approved by the participating study site Institutional Review
Boards and by the ABCD Study centralized Institutional Review
Board.

Participants

Analyses were conducted on data from the ABCD Study 3.0
release, which includes baseline data from 11,875 participants
and 6,571 participants at a 2-year follow-up. In addition to
study-wide exclusionary criteria, the current analysis excluded
participants reporting a history of neurological disorders (e.g.,
cerebral palsy, seizures), concussion, diabetes, lead poisoning,
muscular dystrophy, multiple sclerosis, and substance abuse,
as well as participants presently or previously meeting diag-
nostic criteria for an eating disorder (anorexia nervosa,
bulimia nervosa, binge eating disorder), schizophrenia, or
psychosis (assessed using the K-SADS-PL) at baseline and/or at
Year 2. Moreover, participants identified as having low-quality
anatomical images (ABCD NDA name: fsqc_qc) were further
excluded from respective analyses at baseline and Year 2. For
consistency within the data, only subjects whose data were
acquired using MRI scanners from a single vendor (Siemens
Healthineers AG, Erlangen, Germany) were included in our
analysis (n ¼ 14 of 21 sites). To avoid extreme values due to
potential measurement error, participants whose waist
circumference, BMI, or NAcc cellularity fell outside of four
standard deviations from the group mean at either time point
(n ¼ 35) were excluded from further analysis. Participants
with missing data for any variables of interest or covariates
were further excluded, resulting in 2,378 participants with
complete data at Year 2 and 2,333 participants with complete
data at both baseline and Year 2 (44.6% female; mean [s.d.]
age at baseline: 9.97 [.61] years; mean [s.d.] at Year 2: 11.96
[.63] years) (see Table 1 for complete participant
demographics).

Data acquisition and preprocessing

Waist circumference. WC was measured for each participant at
baseline and Year 2. Measurements were taken by placing a tape
measure along the highest point of the pelvic bone and rounded
to the nearest .1 inch. Measurements were collected twice and
averaged to maximize accuracy. In accounting for differences in
age-specific and sex-specific growth curves, resulting values
were converted to percentiles based on data from the US
National Health and Nutrition Survey (NHANES III) [28] using the
R package childsds.

Body mass index. Standing height and weight were measured
using a stadiometer and digital scale, respectively. Measure-
ments were collected twice and averaged to maximize accu-
racy. BMI was calculated for each participant using the
following formula: weight (kg)/(height [cm]/100)2. The result-
ing BMI values were converted to CDC-standard percentiles
and stratified according to BMI class using the R package
PAutilities.

Diet. Dietary fat consumption was estimated using the Block
Kids Food Screener (BKFS). The BKFS is a parent-reported, youth-
confirmed assessment measuring food intake over the previous
week. Quantity and frequency for each of 39 food items are
collected and immediately analyzed by the NutritionQuest
database for average daily intake of predetermined dietary var-
iables based on the participant’s age-sex group. Dietary intake
data was only collected at the Year 2 follow-up and was not
collected at baseline.
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Pubertal status. Child pubertal status was assessed by self-report
and parent-report of physical development, yielding a categori-
cal maturation score similar to that of Tanner staging.

Parent marital status, income, and education. Parent-reported
demographic covariates included total combined family income
(less than $50,000; between $50,000 and $100,000; greater than
$100,000), marital status (married; single); and parental years of
education (No high school diploma; high school diploma or GED;
Some college; Bachelor’s degree; Post-graduate degree).

Genetic ancestry. Saliva samples were collected at baseline and
immediately shipped to Rutgers University Cell and DNA Re-
pository (RUCDR), where the sample was prepared for geno-
typing. Genotyping data for 733,293 single nucleotide
polymorphisms (SNPs) were generated using the Affymetrix
NIDA Smokescreen� array.

Restriction spectrum imaging. Diffusion images were acquired at
baseline and Year 2 using a spin-echo EPI acquisition with TE/
TR ¼ 88/4100 ms, multiband acceleration factor of 3, phase
partial Fourier factor of .75, matrix size of 140x140, 81 slices, and
an axial acquisition with 1.7-mm isotropic resolution. Diffusion-
weighted data were acquired with six directions at b ¼ 500 s/
mm2, 15 directions at b ¼ 1000 s/mm2, 15 directions at b ¼ 2000
s/mm2, and 60 directions at b ¼ 3000 s/mm2. The RSI model was
fitted on a voxelwise basis at baseline and Year 2 using a linear
estimation approach [22]. The NAcc was anatomically defined
using automated atlas-based segmentation and used to extract
NAcc-specific cellularity estimates. Subject-specific estimates of
head motion (mean framewise displacement) during diffusion
scans were included as a covariate in all RSI analyses.

Longitudinal changes

Linear mixed-effects models (lme4) were used to quantify
two-year changes in body measurements. Fixed effect covariates
included age, sex, pubertal stage, genetic ancestry, parental ed-
ucation, income, and marital status. Random effects included
subject ID and family ID nested within site. Two-year change in
NAcc cellularity was similarly assessed with NAcc volume as an
additional fixed covariate and family ID nested with scanner ID
(rather than site) as a random effect.

Latent change score modeling

Bivariate LCS modeling was performed using Lavaan in R and
utilized publicly available code provided by Kievit et al. [30]
(https://osf.io/4bpmq/). Two-year changes in WC percentile and
NAcc cellularity were modeled as latent change scores to identify
contributions of baselinemeasurements on respective outcomes.
To provide a comparison to a clinical standard, two-year changes
in BMI percentile were additionally modeled using an identical
statistical framework (see Appendix A1). Models were computed
using maximum likelihood estimation with robust standard er-
rors and a Yuan-Bentler correction for non-normality.

Time-dependent covariates in themodel included age (mean-
centered), pubertal stage, head motion (framewise displace-
ment) during respective RSI scans, and NAcc volume at baseline
and Year 2. Time-independent covariates included sex, parental
education, household income, parent marital status, and
continuous genetic estimates of African, American, and Asian
ancestry. Time-independent covariates were included for base-
line WC percentile and NAcc cellularity. Time-dependent cova-
riates were modeled as separate regressions with both WC
percentile and NAcc cellularity for respective time points and
were allowed to covary between time points. Variables were
allowed to covary based on known associations (e.g., age and
puberty) and as observed in the current dataset (see Figure A1).
LCSMs were additionally computed without covariates to rule
out the possibility that covariate adjustment led to false or
misleading findings [34], without the inclusion of siblings (n ¼
301; randomly selected from each sibling pair) to ensure effects
were not influenced by family structure, and with site-wise re-
gressors (dummy coded as 0 or 1) to account for potential dif-
ferences across sites.

Based on a two-index presentation strategy recommended by
Hu and Bentler [35], LCSM fit was assessed using the Compara-
tive Fit Index (CFI) and RootMean Square Error of Approximation
(RMSEA). CFI is a relative measure of model fit, comparing the
hypothesized model to an unstructured baseline model and
adjusting for sample size. CFI ranges from 0 to 1, with scores
greater than 0.95 indicating a good fit. RMSEA is an absolute
measure of model fit that compares the hypothesized model to
the population covariance matrix, with values ranging from 0 to
one and scores less than 0.06 indicating a close fit. Effects of
interest were bootstrapped (5,000 iterations) to estimate 95%
confidence intervals, and path coefficients were standardized to
allow for interpretability across variables included in the model.

Mediation analysis

To further probe the relationship between NAcc cellularity
and obesity-related outcomes, a mediation analysis was per-
formed. Diet information obtained at the Year 2 follow-up
allowed for a secondary analysis of the relationship between
diet andWC percentile, mediated by NAcc cell density. Dietary fat
was used to assess this relationship based on animal literature
demonstrating the role of a high-fat diet in promoting NAcc
inflammation [19,20] and subsequent weight gain. Dietary fat
was normalized by total caloric consumption to obtain an esti-
mate of relative dietary fat consumed. Nonfat macronutrients
(dietary carbohydrates, protein, and fiberdeach normalized by
total caloric consumption) and total caloric intake were used for
comparison to demonstrate specificity to dietary fat.

For consistency across analyses, Lavaan was used to perform
the mediation analysis within an SEM that included all time-
independent covariates used in the LCSM (i.e., sex, genetic
ancestry, parental income, marital status, and education), as well
as time-dependent covariates at Year 2 (i.e., age, puberty, head
motion, and NAcc volume). Nonimaging covariates were
regressed with dietary fat.

Results

Longitudinal change

WC percentile was significantly correlated with BMI percen-
tile at baseline (Pearson’s r¼ 0.69; 95% CI: [0.67, 0.71]; p< .0001)
and at Year 2 (Pearson’s r ¼ 0.76; 95% CI: [0.74, 0.77]; p < .0001).
Two-year change in WC percentile was significantly correlated
with two-year change in BMI percentile (Pearson’s r ¼ 0.34; 95%
CI: [0.30, 0.37]). Baseline WC percentile (Figure 1A) and BMI
percentile (Figure 1B) significantly increased at the Year 2

https://osf.io/4bpmq/
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follow-up visit (WC: b¼ 2.46; SE¼ 0.47; t¼ 5.26; p< .0001; BMI:
b ¼ 2.24; SE ¼ 0.34; t ¼ 6.68; p < .0001). Likewise, NAcc cell
density significantly increased after two years (b ¼ 0.011;
SE ¼ 0.0003; t ¼ 38.50; p < .0001) (Figure 1C).
Latent change score model

The LCSM demonstrated a good model fit (CFI ¼ .98; Root-
Mean-Square Error of Approximation [RMSEA] ¼ 0.039; 90% CI:
[0.036, 0.041]; p� .05¼1.0) (Figure 2). Baselinemeasures of both
Figure 1. Two-year change in waist circumference and NAcc cellularity. Rain-
cloud plots of waist circumference (A), BMI (B), and RSI-based NAcc cellularity
(C) at baseline and at Year 2 follow-up. Sex-specific WC and BMI distributions
are visualized in Figure A2.
WC percentile and NAcc cellularity negatively predicted two-
year changes in respective measures (WC: b ¼ e0.49; p <

.0001; NAcc cellularity: b ¼ e0.43; p < .0001), such that higher
values at baseline corresponded with smaller change scores.
Cross-domain paths demonstrated that baseline WC percentile
predicted two-year change in NAcc cellularity (b ¼ 0.10; 95%
CI ¼ [0.06, 0.14]; p < .0001) and that NAcc cellularity predicted
two-year change in WC percentile (b ¼ 0.08; 95% CI ¼ [0.04,
0.12]; p ¼ .001). Although the effect size for the relationship
between WC percentile and change in NAcc cellularity was
stronger, bootstrapped confidence intervals demonstrate no
difference in strength of cross-domain parameter estimates.
Using the likelihood ratio test, model fit significantly decreased
when either cross-domain path was constrained to zero (base-
line WC percentile: Dc2(1) ¼ 24.19; p < .0001; baseline NAcc
cellularity: Dc2(1) ¼ 17.24; p < .0001).

Consistent with previous work [24], WC percentile and NAcc
cellularity were significantly associated at baseline (b ¼ 0.16; p <

.0001). Moreover, there was a significant association between
latent change scores for WC percentile and NAcc cellularity
(b ¼ 0.07; p < .001). Excluding all covariates from the LCSM
(Figure A3), excluding siblings (Figure A4), or including site-wise
regressors (Figure A5) did not affect the interpretation of results,
suggesting that the effects observed here are robust to the in-
clusion of covariates, siblings, and potential site differences.
Similar effects were also observed when considering change in
BMI percentile (see Appendix A1) regardless of whether cova-
riates were included (Figure A6) or excluded (Figure A7).

Association with diet at year 2

Anthropometrics such as waist circumference and BMI may
serve as a proxy for the cumulative impact of diet; however,
directly testing the contribution of diet on NAcc cellularity is
needed to understand the potential role of diet-induced neuro-
inflammation on childhood weight gain. Food intake data
collected at Year 2 allowed for a more explicit evaluation of the
associations between diet, NAcc cellularity, and anthropometrics.
An analysis of NAcc cellularity mediating the relationship be-
tween diet and WC percentile demonstrated good model fit
(CFI ¼ 0.97; RMSEA¼ 0.035; 90% CI: [0.031, 0.039]; p � .05 ¼1.0)
(Figure 3).

Dietary fat was significantly associated with WC percentile at
Year 2 (total effect [path c]: b ¼ 0.07; 95% CI ¼ [0.03, 0.11]; p <

.001) and was fully mediated by NAcc cellularity (direct effect
[path c’]: b ¼ 0.036; 95% CI ¼ [e0.002, 0.07]; p ¼ .06). Dietary fat
was associated with NAcc cellularity (path a: b ¼ 0.049; 95% CI ¼
[0.01, 0.08]; p ¼ .008), and consistent with previous findings at
baseline and Year 1 [24], NAcc cellularity was associated withWC
percentile at Year 2 (path b: b ¼ 0.18; 95% CI ¼ [0.15, 0.22]; p <

.0001). The indirect effect of NAcc cellularity on the relationship
between dietary fat and WC percentile was significant (a*b: b ¼
0.01; 95% CI ¼ [0.003, 0.02]; p < .01; proportion mediated ¼
0.20), suggesting a role of NAcc cell density in mediating diet-
induced weight gain in youth. Similar results were observed
using BMI percentile (see Appendix A1; Figure A8).

As a comparison, additional mediation models were tested
using nonfat macronutrients (dietary carbohydrates, protein, fi-
ber) and total caloric intake as independent variables in identical
models. Among nonfat macronutrients and caloric intake, only
dietary fat showed a significant positive relationship with WC
percentile that was mediated by NAcc cellularity (see



Figure 2. Latent change score model demonstrating longitudinal associations between waist circumference percentile and NAcc cellularity. Standardized coefficients
plotted for paths of interest. Significance represented as p < .0001 (***); p < .001 (**). Thin, light gray arrows represent covariate paths of no interest.
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Appendix A1). Dietary carbohydrates demonstrated an inverse
association with NAcc cellularity and waist circumference
(Figure A9), and no significant mediations were observed with
dietary fiber, protein, or total caloric intake.
Figure 3. Mediation model. NAcc cellularity significantly mediated the rela-
tionship between dietary fat and waist circumference percentile at Year 2. Path
coefficients are standardized, and significance is represented as p < .0001 (***);
p < .01 (**). Covariates were consistent with those included in the LCSM at
Year 2.
Discussion

Consistent with the “vicious cycle” hypothesis of diet-induced
brain changes promoting unhealthy eating and weight gain [36],
the present study observed reciprocal influences of baseline
waist circumference percentile (as well as BMI percentile) and
NAcc cellularity on two-year changes in the converse measures.
In addition, NAcc cell density was found to mediate the rela-
tionship between diet andWC percentile at the Year 2 follow-up.
These findings replicate and extend prior work linking NAcc
cellularity and weight gain in youth [24] by further demon-
strating the longitudinal associations between obesity-related
metrics (e.g., WC) and the microstructural properties of the
developing brain. Moreover, these findings mirror rodentmodels
of obesity that have demonstrated diet-induced neuro-
inflammation of the NAcc, marked by an increase in glial cell
proliferation [19,20]. The present study, taken together with
previous human and animal literature [19,24], suggests that diet
influences NAcc inflammation, which may, in turn, contribute to
further unhealthy eating and weight gain (Figure 4). Future work
is needed to disentangle potential mechanisms underlying this
cycle and to more explicitly test relationships within this
framework that were not directly assessed in the present study.

Despite the evidence supporting weight-related changes in
NAcc inflammation observed here, the mechanisms underlying
these proposed inflammatory changes remain unclear.



Figure 4. Cartoon schematic illustrating the proposed cycle of a highly palatable
diet contributing to neuroinflammation, particularly within brain regions asso-
ciated with reward (e.g., the NAcc), subsequently influencing behavioral changes
in eating behaviors and increases in weight gain.
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The production of proinflammatory cytokines by white adipose
tissue is a major source of obesity-related inflammation [37].
Diets that are high in fat and sugar promote abdominal fat
accumulation, and thus, greater waist circumference to favor
local immune responses that can propagate to the brain [38].
Previous studies have found that prolonged exposure to a highly
palatable (i.e., high-fat, high-sugar) diet additionally produces
neuroplastic and functional changes in the NAcc that influence
behavior. For example, Gutiérrez-Martos et al. [20] examined the
NAcc of mice fed a “cafeteria” diet and observed an increase in
the expression of inflammatory cytokines (IL-1b, IFN-g), as well
as a morphological change in microglia characteristic of a reac-
tive state. This diet-induced neuroinflammation was associated
with increased consumption of calories and a corresponding
increase in body weight. However, these behavioral changes
reversed when inflammation and microglia activation was
reduced via systemic administration of minocycline, a broad in-
hibitor of peripheral and central inflammation. Importantly, in-
flammatory responses were accompanied by structural changes
in dendritic cell density, which may contribute to functional
differences in the rewarding effects of food and food-motivated
behaviors.

A number of studies have begun to explore the possibility that
the impact of palatable foods on neural plasticity [39], as well as
on neuroinflammatory responses [40], may contribute to altered
emotional and cognitive processing [41], ultimately giving rise to
dysfunctions in learning and memory, mood regulation, and
compulsive behaviors. The direct contribution of NAcc inflam-
mation to heightened food-seeking in obesity is underscored by
observations of reduced compulsivity for sugar in diet-induced
obese mice with targeted genetic inhibition of inflammation in
the NAcc [19]. In another study, increased dendritic spine density
within the NAcc was associated with the consumption of palat-
able foodsdindependent of caloric contentdand occurred spe-
cifically inmice demonstrating enhanced food-seeking behaviors
[42]. Although the consumption of high palatable foods appears
to drive NAcc inflammation, different classes of macronutrients
have been shown to differentially impact inflammatory re-
sponses. For example, several studies have found that a high-fat
diet leads to increased neuroinflammation [20,43e45], and NAcc
inflammation has been specifically linked to saturated fats [19].
Moreover, the present study observed an inverse association
between WC percentile and dietary carbohydratesdan associa-
tion that was negatively mediated by NAcc cell density
(Figure A9). Future work should aim to further disentangle the
contributions of various macronutrients on neuroinflammation,
as well as consider a possible protective mechanism whereby
certain macronutrients buffer against neuroinflammation.

Another potential mechanism by which this cycle may occur
is in interactions with neuroinflammation in the hypothalamus
and subsequent differences in hypothalamic neuroendocrine and
metabolic regulation. Hypothalamic inflammation accelerates
energy imbalance [46], interfereswith the ability to regulate food
intake [44], and has been suggested to modify hypothalamic
circuitry and interfere with outputs to other brain regionsd
including regions involved in reward-processing [45] and eating
behavior [47]. As a result, the hypothalamus has been a key target
for investigations of diet-induced neuroinflammation in rodents,
which suggests that prolonged exposure to high-fat diets and
associated metabolic dysfunction are drivers that sustain neu-
roinflammation in subcortical structures [43,48]. Methodological
challenges have precluded replicable segmentation of the hy-
pothalamus in human neuroimaging, and thus hypothalamus-
specific cellularity estimates are not available in the ABCD
Study release 3.0 data. However, recent advances in machine
learning have allowed for the development of new segmentation
algorithms that are capable of automated hypothalamic seg-
mentation using a deep convolutional neural network [49]. As
tools such as these become more readily available, future work
will be able to examine potential relationships between diet and
neuroinflammation of the hypothalamus and NAcc in humans.

Several limitations of the present study warrant further
consideration. First, although the study motivation and inter-
pretation are based on prior work conducted in animal models of
obesity and neuroinflammation [19], the ABCD Study release 3.0
dataset does not include direct markers of neuroinflammation.
Recent work has used diffusion-based spectrum imaging (DBSI)
to relate imaging markers of striatal neuroinflammation to self-
report emotional eating and obesity in adults [50]. DBSI pro-
vides biomarkers of inflammation by characterizing water
diffusion properties associated with axon/myelin injury and
inflammation [51] and may provide convergent information
alongside RSI-based measures of cell density. However, addi-
tional work is needed to directly quantify and assess the rela-
tionship between eating behavior, obesity, and in vivo
neuroinflammation in humans. Human neuroimaging has
demonstrated relationships between food reward sensitivity in
the NAcc and genetic risk for obesity [7], eating behavior [52],
and weight gain [53] in youth, yet it remains unclear how these
findings might relate to potential diet-induced inflammatory
factors. Future studies are needed to integrate prior work in
animals with human studies examining reward-related brain
function and behavior.

Second, waist circumference measurements are prone to
measurement error. Variation in WC measurements may be due
to inconsistencies across experimenters, differences in lean
muscle and bone mass, and difficulty locating anatomical land-
marks in overweight participants [54]. The present study sought
to identify potential measurement errors by excluding in-
dividuals with waist circumference values (and BMIs) outside of
four standard deviations; however, this exclusion criteria does
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not identify inaccurate values within four standard deviations.
Moreover, waist circumference and BMIdeven when accurately
measureddmay not adequately capture adiposity levels relative
tomore directmeasures (e.g., dual-energy X-ray absorptiometry)
[55]. Future work should consider additional anthropometrics
that more directly and accurately measure fat mass associated
with negative health outcomes.

Third, to test a specific hypothesis regarding dietary fat based
on prior work in animal models [19], the present study utilized
self-report dietary intake data to estimate the relative amount of
dietary fat an individual consumes daily. However, individuals
tend to poorly estimate their energy intake and commonly un-
derestimate the number of calories they consume [56]. Although
unavailable in the current ABCD Study data release (3.0), future
work should consider assessing dietary metabolites and corre-
sponding blood markers directly (e.g., LDL cholesterol levels
increased by the consumption of saturated and trans fats) as an
alternative to self-report intake data.

Fourth, the present study examined relationships between
NAcc cellularity and nonfat macronutrients (carbohydrates, fiber,
protein) to consider the specificity of the observed relationship
to dietary fat. We found that NAcc cellularity fully mediated the
relationship between WC percentile and dietary fat intake only
and did not mediate relationships with dietary fiber, protein, or
overall caloric intake. However, we additionally observed a par-
tial negative mediation with dietary carbohydrates
(Appendix A1) such that carbohydrate intake was inversely
associated with NAcc cellularity and WC percentile at Year 2
(Figure A9). Although these findings suggest that dietary fat
intake may increase neuroinflammation and weight gaindand
that dietary carbohydrates may buffer against these effectsd
additional work is needed to further examine these relation-
ships. Macronutrients are not consumed in isolation, and com-
binations of different food groups can have synergistic effects on
an individual’s health. Thus, caution is necessary in interpreting
these single-nutrient results. In addition to measuring blood
markers of diet and health, future work should consider evalu-
ating an index of the overall pattern of diet, which may provide a
more informative indicator of diet quality.

Finally, the interpretation of our results is constrained by the
selection of variables and inclusion criteria of participants. For
example, the present study does not incorporate other factors
that may influence dietary intakesdsuch as physical activity,
access to healthy foods, and medications that affect appetite. In
addition, the present study exclusively examines data from par-
ticipants scanned using a single MRI manufacturer (Siemens).
Although excluding MRI data from other scanner manufacturers
(Philips and GE) reduces potential confounds due to the scanner
platform, doing so may inadvertently bias the sample de-
mographics such that participants from underrepresented
groups or with limited access to resources are disproportionately
excluded. Future work should take into consideration additional
covariates, inclusion criteria (e.g., non-Siemens data), and
exclusionary criteria (e.g., medications) that may impact indi-
vidual differences in diet and how these relate to neuro-
inflammation in youth.

The present study, taken together, builds on previous litera-
ture in animals and in humans to understand the relationship
between neuroinflammation of the NAcc and diet-induced
weight gain. We observed longitudinal changes in NAcc cellu-
larity to be reciprocally influenced by changes in WC percentile,
and further demonstrated a role of NAcc cell density inmediating
the relationship between dietary fat intake and WC percentile.
These findings extend prior work linking NAcc cell density with
weight gain in youth [24] and suggest that diet plays an impor-
tant role in neurodevelopmental changes that may influence
eating behavior. Given that adolescence is characterized by
neurodevelopmental changes, as well as a heightened sensitivity
to learning [57] and the formation of habits [58] that can affect
later health outcomes, it is crucial to understand the impact of
diet on the developing brain, as well as the behavioral conse-
quences. Understanding the role of diet-induced neuro-
inflammation on the developing brain may provide key insight
into interventions that can mitigate pediatric obesity.
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