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Participants  

Participants were youth who completed the baseline session (at ages 9-10-years-old) and the 2-

year follow-up session (ages 11-12-years-old) of the multisite ABCD Study. Details regarding the 

sampling strategy, sample norms, and sample composition have been described elsewhere (1). All study 

procedures were approved by a centralized institutional review board at the University of California San 

Diego and/or by each site’s institutional review board (2). Caregivers provided signed informed consent 

and children provided written assent prior to the study. For the present analyses, participants were 

included if they: (a) had Conduct Disorder (CD) data available from their baseline session, (b) were not 

missing any data for key variables, and (c) had valid rs-fMRI data released from their baseline session 

that also passed the ABCD Study overall MRI quality checks (3). Further, given the large number of 

ABCD Study families with multiple children and/or twins that participated in the study, siblings were 

overrepresented in the sample (4). To help control for any family-related effects, only one, randomly 

selected, child per family was used in the current analyses, yielding a final sample of n = 2,368 (see Table 

1 in the main text).  

 

Model Training  

The neurons of the hidden layer were calculated as follows (5):  

𝑦! 	= 	 𝑓"(∑ 	#!
$%& 𝑤&(𝑖, 𝑗)𝑥$ + 𝑏&) for 𝑗 = 1,2, . . . , 𝑁", 
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where 𝑥$ was the ith input neuron value, 𝑦! was the jth hidden neuron value, 𝑁' was the number of input 

neurons, 𝑁" was the number of hidden neurons, 𝑓" was the hidden layer activation function, and 𝑤& and 

𝑏& were the weight matrix and the bias vector connecting the input layer to the hidden layer.  

We adopted the standard approach for binary classification models of defining 𝑓" as the sigmoid 

activation function (6). This activation function transformed inputs into values between 0 and 1 to amplify 

meaningful signals and suppress noise. The calculation of the sigmoid function 𝑓" is displayed below: 

𝑓"(𝑥) 	= 	
1

1 + 𝑒()*)
 

Linear and non-linear transformations were then conducted on the hidden neurons 𝑦! to calculate 

values in the output layer. Output nodes were calculated as follows: 

𝑂, 	= 	 𝑓-(∑ 	#"
!%& 𝑤.(𝑗, 𝑘)𝑦! + 𝑏.) for 𝑘 = 1,2, . . . , 𝑁-, 

where 𝑦! was the jth hidden neuron value, 𝑂/ was the kth output neuron value, 𝑁- was the number of 

output neurons, 𝑓0 was the output layer activation function, and 𝑤. and 𝑏. were the weight matrix and the 

bias vector connecting the hidden layer to the output layer. The sigmoid activation function also was used 

for 𝑓0. 

The output of the model was the probability that a given participant met the criteria for CD. We 

adopted the standard classification threshold of .5 to convert probability outputs into binary classes of 

“CD” or “no CD.” As a result, all outputs of probability ≥ .5 were classified as meeting for CD diagnosis, 

and all outputs of probability < .5 were classified as not meeting for CD diagnosis (7).  

We trained weight and bias parameters with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) 

algorithm, an iterative method for solving non-linear optimization problems (8). The BFGS algorithm 

conducts backpropagation to calculate the gradient of the cross-entropy loss function with respect to 

weight and bias parameters. Each gradient is computed one layer at a time, iterating backward from the 

last layer to avoid redundant calculations of intermediate terms. This method increases the efficiency of 

model training and updates parameters until the loss function converges at its minimum. Random batches 

of data were processed at a time, providing stability during model training and reliable convergence (9).  
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As typical with binary classification models, the cross-entropy loss 𝐿12 was used to optimize 

parameters (10). 𝐿12 measures the dissimilarity between the actual class y and the predicted class 𝑦7. By 

selecting weight and bias terms that minimize 𝐿12, the BFGS algorithm maximizes the model’s 

classification accuracy. 𝐿12 was calculated as follows: 

𝐿12(𝑦7, 𝑦) 	= 	−𝑙𝑜𝑔(𝑝(𝑦|𝑥)) 	= 	−[𝑦 ∗ 𝑙𝑜𝑔(𝑦7) + (1 − 𝑦) ∗ 𝑙𝑜𝑔(1 − 𝑦7)] 

The BFGS algorithm updates parameters until 𝐿12 converges at its minimum (11).  

 

Model Performance Measures  

Accuracy is a performance measure that quantifies the overall precision of a classifier. This 

metric describes the proportion of true positive and true negative predictions among all evaluated cases. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 		
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	 + 	𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	 + 	𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	 + 	𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	 + 	𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Sensitivity, or the true positive rate, is the proportion of participants with CD that are correctly 

classified with the CD label, and specificity, or the true negative rate, is the proportion of typically 

developing participants that are correctly classified as not having CD.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 = 	𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒	 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 = 	𝑡𝑟𝑢𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒	 = 	
𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

The strongest classifiers find an optimal balance between sensitivity and specificity. A model 

with high sensitivity may lack clinical relevance if it demonstrates low specificity and is biased towards 

true positive and false positive classifications. Conversely, a classifier may yield high specificity at the 

cost of low sensitivity. The receiver operating characteristic (ROC) curve plots sensitivity against 1 − 

specificity, also termed the false positive rate, at all possible classification thresholds. Thus, ROC curves 

that closely approach the left corner represent models that optimize true positive and true negative rates 

and maximize overall accuracy. The area under the ROC curve (AUC) is a metric that quantifies the 

balance between sensitivity and specificity and the overall diagnostic accuracy of the model. The AUC is 
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calculated via standard integration and adopts values between 0 and 1, where 0 indicates a perfectly 

inaccurate classifier and 1 reflects a perfectly accurate classifier. An AUC of .5 represents a ROC curve 

that falls on the diagonal line and displays no discriminatory ability (12). The ROC curve for the present 

model approaches the (0,1) point of perfect prediction, suggesting that this classifier performed well at 

maximizing sensitivity and specificity (Supplemental Figure S1). 

 
Supplemental Figure S1. ROC Curve 

 

Note. The ROC curve displays the tradeoff between specificity and sensitivity at various classification thresholds. 
The coordinate (0,1) in the upper left corner represents a perfect classification with 100% sensitivity and specificity. 
The diagonal line depicts random predictions with 50% sensitivity and specificity that fail to meaningfully 
discriminate between classes. 
 
 
Models within Risk Factor Domain  
 

To assess the predictive ability of neighborhood and family risk factors, the social model was 

trained. Participants with missing neighborhood or family risk factors were excluded, yielding a final 

sample of 3,347 for training and testing. The architecture of the social model consisted of 21 input 

neurons, three hidden neurons, and one output neuron to calculate the probability that a participant met 

the criteria for 2-year CD (Supplemental Figure S2).  
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Supplemental Figure S2. Network Architecture for the Social Model 

 
Note. The social model consists of 21 input neurons, three hidden neurons, and one output neuron. Line thickness is 
proportional to the magnitude of each weight and bias term. Black lines indicate positive parameters and grey lines 
indicate negative parameters.  
 

 

For the within-domain psychological model (including ADHD, ODD, and neuropsychological 

indictors) a sample of 3,244 participants was available. We specified 17 input neurons, five hidden 

neurons, and one output neuron for this model (Supplemental Figure S3). 
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Supplemental Figure S3. Network Architecture for the Psychological Model 

 
Note. The psychological model consists of 17 input neurons, five hidden neurons, and one output neuron. Line 
thickness is proportional to the magnitude of each weight and bias term. Black lines indicate positive parameters and 
grey lines indicate negative parameters.  
 
 

To assess the predictive ability of resting-state brain topography, the biological model was trained 

on 2,867 participants. We determined the optimal architecture of this model to contain 25 input neurons, 

seven hidden neurons, and one output neuron (Supplemental Figure S4). 
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Supplemental Figure S4. Network Architecture for the Biological Model 

 

Note. The biological model consists of 25 input neurons, seven hidden neurons, and one output neuron. Line 
thickness is proportional to the magnitude of each weight and bias term. Black lines indicate positive parameters and 
grey lines indicate negative parameters.  
 
 

Supplemental Results  

 

Traditional Logistic Regression Model   

 One purported advantage of machine learning methods is to maximize prediction by improving 

on traditional analytical techniques (e.g., logistic regression). To test inferential statistical models, we ran 

a logistic regression model including all baseline variables to predict CD diagnosis at the 2-year follow-

up session. The logistic regression model demonstrated an accuracy of 80.16%, an AUC of .8674, model 
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sensitivity of 88.28%, and model specificity of 82.10%. These results indicate that the FNN model 

outperformed the logistic regression model, improving classification by approximately 11%.   

 

Model Fit for Classifying Other Psychiatric Disorders 

CD and Oppositional Defiant Disorder (ODD) are considered externalizing disorders that share 

latent characteristics and premorbid risk factors (13, 14). To test whether the risk factors included in our 

FNN model capture risk factors related to CD specifically or externalizing disorders more broadly, we 

explored the ODD diagnosis at the 2-year follow-up session as the outcome instead of CD. We found that 

using the same risk factors as in the primary analysis, and controlling for baseline ODD symptomatology, 

the model predicting ODD achieved 73% accuracy, 64% sensitivity, and 81% specificity. Evidence of 

reasonable accuracy and specificity speaks to the shared risk factors between disorders, however the 

stronger metrics, particularly for sensitivity, for the CD model highlights how the risk factors used in our 

FNN model provided a stronger prediction of CD than ODD.  

We also examined whether our FNN model was stronger for CD, an externalizing disorder, than 

other disorders typically considered on the internalizing spectrum. We conducted two additional analyses 

with the goals of predicting depression or anxiety at the 2-year follow-up session. One model included K-

SADS Major Depressive Disorder diagnosis at the 2-year session as the outcome, all predictors from the 

main model, and research collection site, biological sex at birth (dichotomously coded, male vs. female), 

race (dichotomously coded, white vs. non-white), age, and baseline Major Depressive Disorder as 

covariates. This model achieved poor metrics with 63.68% prediction accuracy, 71.39% sensitivity, and 

56.36% specificity. Another model included a composite score of meeting diagnostic criteria for any K-

SADS Anxiety Disorder (panic disorder, agoraphobia, separation anxiety disorder, social phobia) at the 2-

year session as the outcome, all predictors from the main model, and research collection site, biological 

sex at birth (dichotomously coded, male vs. female), race (dichotomously coded, white vs. non-white), 

age, and anxiety disorder diagnoses at baseline as covariates. This model also had poor metrics with 

64.07% prediction accuracy, 58.01% sensitivity, and 69.83% specificity. Together, these results suggest 
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that the risk factors selected in the main model are most strongly and accurately predictive of CD and not 

ODD, Major Depressive Disorder, or anxiety disorders.  

 

Replication of Feature Importance for the Biopsychosocial Model  

 Machine learning methods are advantageous because they model complex relationships and can 

identify specific predictors (features) that contribute the greatest variance to the model. However, there is 

debate about the degree to which weighted individual predictors should be interpreted given the 

complexity of the models and the inherent variation introduced into the models based on randomization 

(15). We re-ran our biopsychosocial model predicting CD at the 2-year follow-up session 10 times to 

examine the reliability of the top predictors identified by the feature importance analysis. In all 10 model 

iterations, greater ADHD and ODD symptomatology, greater reports of family members throwing 

objects, lower crystallized cognitive ability, and lower parental monitoring appeared in the top 10 

features. In 90% of the model iterations, lower frontoparietal degree, lower card sorting ability, and lower 

subcortical efficiency were included in the top 10 features. In 70% of the model iterations, greater 

frontoparietal efficiency was in the top 10 features. Finally, in 60% of the model iterations, lower family-

level income was present in the top 10 features. These findings indicate that many of the important 

features identified in the main analysis were reliably represented across model iterations.  

 

Models within Risk Factor Domain 

We compared each classifier’s predictions against the known diagnostic status of participants at 

their 2-year follow-up assessment to construct confusion matrices (Supplemental Tables S1-S3).  
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Supplemental Table S1. Confusion Matrix for the Social Model 

  Predicted Class 

  
 
True Class 

  No CD CD 

No CD 490 
(True Negative) 

83 
(False Positive) 

CD 163 
(False Negative) 

369 
(True Positive) 

 
 
Supplemental Table S2. Confusion Matrix for the Psychological Model 

  Predicted Class 

  
 
True Class 

  No CD CD 

No CD 517 
(True Negative) 

38 
(False Positive) 

CD 239 
(False Negative) 

277 
(True Positive) 

 
Supplemental Table S3. Confusion Matrix for the Biological Model 

  Predicted Class 

  
 
True Class 

  No CD CD 

No CD 374 
(True Negative) 

117 
(False Positive) 

CD 101 
(False Negative) 

355 
(True Positive) 

 
 

We calculated accuracy, sensitivity, specificity, and AUC measures for each classifier to compare 

performance across the different models (Supplemental Table S4).  
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Supplemental Table S4. Performance Measures 

Model Accuracy Sensitivity Specificity AUC 

Social 77.74% 69.36% 85.51% . 8450 

Psychological 74.14% 53.68% 93.15% . 7796 

Biological 76.98% 77.85% 76.17% . 7990 

  
 

ROC curves were generated to assess how each classifier maximized sensitivity and specificity 

rates (Supplemental Figure S5). 

 

Supplemental Figure S5. ROC Curves  

 

Note. The ROC curves display the tradeoff between specificity and sensitivity at various classification thresholds. 
The ROC curve for our model balances specificity and sensitivity by maximizing true positive rates and minimizing 
false positive rates. 
 
 
Models within Domain: Feature Importance and Sensitivity  

In the social model, income, neighborhood safety, and parental monitoring negatively correlated 

with CD. In contrast, family fighting, hitting, disagreement, and anger all positively predicted CD. In the 

psychological model, ADHD and ODD positively predicted CD. Conversely, low performance on the 

picture vocabulary, reading recognition, card sort, and pattern comparison tasks and reduced crystallized 

cognitive ability predicted CD. Lastly, in the biological model, betweenness centrality, degree, and 

efficiency measures in the default, frontoparietal, salience, and subcortical networks were the strongest 

predictors of CD. Greater efficiency in the default and salience networks and greater subcortical 

betweenness centrality predicted CD. Reduced efficiency in the frontoparietal and subcortical networks, 

A. Social ROC B. Psychological ROC C. Biological ROC
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as well as lower salience betweenness centrality and frontoparietal degree correlated with CD 

(Supplemental Figures S6-S9). 

 

Supplemental Figure S6. Feature Importance for Domain-Specific Models

 
Note. Features are ordered from left to right by increasing absolute value of importance. The top seven features are 
represented in the social, psychological, and biological domains.  
 
 
Supplemental Figure S7. Sensitivity Plots for the Social Model 
 

 
Note. The sensitivity plots display the relationship between model predictions and the risk factors of income, family 
fighting, neighborhood safety, family hitting, low family disagreement, low family anger, and parental monitoring 
respectively. The explanatory variable denotes risk factor values, and the response variable denotes the probability 
that a participant is diagnosed with 2-year CD. The risk factors of family fighting, hitting, disagreement, and anger 
positively correlate with the likelihood of developing CD, while the risk factors of income, neighborhood safety, and 
parental monitoring negatively correlate with the likelihood of developing CD. 
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Supplemental Figure S8. Sensitivity Plots for the Psychological Model 

 
Note. The sensitivity plots display the relationship between model predictions and the risk factors of ADHD, ODD, 
picture vocabulary performance, reading recognition, card sorting, crystallized cognition, and pattern comparison 
respectively. The explanatory variable denotes risk factor values, and the response variable denotes the probability 
that a participant is diagnosed with 2-year CD. The risk factors of ADHD and ODD symptomatology positively 
correlate with the likelihood of developing CD, while the risk factors of crystallized cognition and performance on 
the picture vocabulary, reading recognition, card sort, and pattern comparison tasks negatively correlate with the 
likelihood of developing CD. 
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Supplemental Figure S9. Sensitivity Plots for the Biological Model

 
Note. The sensitivity plots display the relationship between model predictions and the risk factors of salience 
betweenness centrality (BC) and efficiency, frontoparietal degree and efficiency, subcortical BC and efficiency, and 
default efficiency respectively. The explanatory variable denotes risk factor values, and the response variable 
denotes the probability that a participant is diagnosed with 2-year CD. The risk factors of default and salience 
efficiency and subcortical BC positively correlate with the likelihood of developing CD, while the risk factors of 
frontoparietal and subcortical efficiency, salience BC, and frontoparietal degree negatively correlate with the 
likelihood of developing CD. 
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