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Supplementary Methods and Results 
 

Bayesian Updating of Depletion Rate 

Because depletion rates consist of values between 0 and 1, we represented participant 

beliefs about depletion rates through a Beta distribution. Beta distributions can express a wide 

range of probability distributions over the range [0,1], and are determined by two parameters: α 

and β. This enabled us to represent beliefs about depletion rates in terms of these two parameters. 

Formally, upon learning a tree’s depletion rate, k (obtained whenever participants harvested the 

same tree more than once), our model updates its beliefs about depletion rates via Bayesian 

inference: 

    p(α,β | k)∝p(k|α,β)p(α,β) 

Here, p(α,β | k) is the updated belief that the depletion rate distribution is captured by 

parameters α and β (i.e., the posterior probability). This belief is given by the product of the 

model’s prior probability over these two parameters (p(α,β)), times the likelihood of finding a 

tree with depletion rate k under those parameters (p(k|α,β)). 

To implement this model, we used a discrete hypothesis space consisting of 400 

uniformly-spaced samples, generated from different combinations of α and β parameters. The 

combinations of parameters included the range 1 to 20 of α values with steps of size 1, and the 

range 1 to 20 of β values with steps of size 1. At the beginning of the task, the prior over 

depletion rates were set to p(α,β)=1/400 for all parameter combinations (i.e., a uniform 

distribution), and the likelihood function p(k|α,β) was given by the Beta distribution Beta(r;α,β). 

Finally, the predicted return rate of a new tree is given by the return rate 𝑟: 

𝑟 =#𝑝(α, β)
!,#

*
𝛼
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where p(α,β) is the model’s latest beliefs that the depletion rates are captured by parameters α 

and β, and α/(α+β) is the expected return rate under those parameter combinations. 

Assumption about observers’ knowledge of depletion rate.  

As described in our main text, our model assumes that participants will know a tree’s 

depletion rate k after making consecutive harvests. However, because participants always 

received an integer number of apples, participant’s estimated decay rates may be different from 

the true decay rates. To test the extent to which this assumption could bias our model, we 

calculated the apparent decay rate given a set of apples and compared it to the tree underlying 

decay rate. This analysis revealed an average mismatch of .07 and a mode mismatch of .03 

(obtained by applying kernel density estimation to the list of errors, and finding the model of this 

distribution). 

Supplemental Analyses on Patch Residence Times  

 A common metric used in foraging paradigms is patch residence times. In our 

experiment, we can use the number of “stay” decisions at a tree as a proxy for patch residence 

times, since each tree in our task equates to one patch, and the harvest time in our task is fixed to 

3 seconds. To approximate resource-maximizing patch residence times as defined by our model 

in the main text, we created a fake participant who repeatedly made 6 “stay” decisions before 

“switching” in the traditional foraging task and who repeatedly made 4 “stay” decisions before 

“switching” in the depleted foraging task. Comparing this fake participant’s decisions against the 

model predictions for the traditional foraging task and the depleted foraging task allowed us to 

identify for each tree how many “stay” decisions were in line with our Bayesian-based MVT 

model (i.e., results in a model prediction that is >= .5) and therefore how many “stay” decisions 

were resource-maximizing at each tree. In order to investigate each subject’s patch residence 



 

 

times relative to MVT, for each tree, we converted “stay” decisions to time by multiplying 

number of “stay” decision by 3 (i.e., harvest time) and subtracted this time from the resource-

maximizing patch residence time as defined by MVT. Positive values indicated a tendency for 

participants to underharvest relative to MVT (i.e., switch earlier than is resource-maximizing as 

indicated by MVT), and negative values indicate a tendency for participants to overharvest 

relative to MVT (i.e., switch later than is resource-maximizing as indicated by MVT).  

Individual Differences in Patch Residence Times 

In the traditional foraging task, the mean of the difference score between participant 

patch residence and patch residence time as defined by MVT was 2.05 s (SD=7.53), and in the 

depleted foraging task it was 1.95 s (SD=4.98), indicating that in both environments, participants 

typically switched to explore a new tree earlier than was resource-maximizing as defined by our 

Bayesian-based MVT model. Correlations between this difference score and ADI showed no 

significant relationship between the difference score and ADI in the traditional foraging task 

r(110)=0.03, p = .742 or the depleted foraging task r(110)= -0.01, p = .958, which replicates our 

results showing no significant relationship between our bias parameter and ADI in either 

foraging task.  

Patch Residence Times in the Traditional and Depleted Foraging Tasks  

To compare patch residence times across tasks, we ran a paired samples t-test to compare 

each participant’s average patch residence times in the traditional foraging task in relation to 

average patch residence times in the depleted foraging task. Results showed a significant 

difference in average patch residence times across tasks, t(111) = 3.44, p < .001, CI [2.68, 4.21], 

such that participant’s spent more time harvesting in patches in the traditional foraging task 

(M=12.36, SD=8.91) compared to the depleted foraging task (M=7.26, SD=4.81). In contrast to 



 

 

other foraging studies that manipulate travel time between patches (Constantino et al., 2017; 

Constantino & Daw, 2015; Lenow et al., 2017), we chose to keep travel time constant and 

manipulate patch richness across tasks in order to mimic experiences of resource scarcity. Thus, 

in line with research showing that individuals adjust their decision-making based on patch 

richness (Hutchinson et al., 2008; Wolfe, 2013; Zhang et al., 2015), we see that as predicted by 

MVT, participants spend more time foraging in patches richer in resources compared to patches 

depleted in resources, when travel time is held constant.  

Results of Robustness Analyses 

 Below we present table summaries of the robustness analyses. 

Supplemental Table 1. Summary of Regression Results for Robustness Analyses on Resource-
Maximizing Decision-Making in Resource-Rich Environment    
 Predictor b t 95% CI Lower 

Bound 
95% CI Upper 

Bound 
 Intercept 65.64*** 48.92 62.98 68.30 
 Response inhibition -.89 -.67 -3.54 1.76 
 ADI -4.59*** -3.55 -7.16 -2.02 
 R2 .10    
 Intercept 64.98*** 52.16 62.51 67.45 
 Working memory -2.76** 2.64 .88 6.22 
 ADI -2.82* -2.09 -5.49  -.15 
 R2 .14    
 Intercept 65.82*** 39.15 62.49 69.15 
 Biological sex -2.76 -1.09 -7.87 2.28 
 ADI -3.99** -3.06 -6.57 -1.41 
 R2 .09    
 Intercept 64.86*** 53.08 -6.00 -1.61 
 Age -3.80*** -3.43 -6.00 -1.61 
 ADI -3.49** -3.11 -5.72 -1.27 
 R2 .16    
 Intercept 66.12*** 40.56 62.88 69.36 
 Response inhibition .48 .30 -2.76 3.72 
 Working memory 2.96* 2.11 .17 5.74 
 Biological sex -3.44 -1.32 -8.64 1.75 
 Age -2.87 -1.84 -5.97 .22 
 ADI -3.21* -2.49 -5.76 -.65 
 R2 .20    



 

 

Note. *p < .05, **p <.01, ***p<.00. Row 1 presents results from robust linear regression with ADI and Color-Word 
Stroop task Inhibition/Switching vs. Word Reading contrast z-scored as predictors. Row 2 presents results from 
robust linear regression with digit span backwards z-scored as predictors. Row 3 presents results from robust linear 
regression with ADI and biological sex dummy coded 0= male, 1=female as predictors. Row 4 presents results from 
robust linear regression with ADI and age z-scored as predictors. Row 5 presents results from robust linear 
regression with Color-Word Stroop task Inhibition/Switching vs. Word Reading contrast score, digit span 
backwards, biological sex, age, and ADI as predictors. 
 
Supplemental Table 2. Summary of Regression Results for Robustness Analyses on Resource-
Maximizing Decision-Making in Resource-Depleted Environment    
 Predictor b t 95% CI Lower 

Bound 
95% CI Upper 

Bound 
 Intercept 63.65*** 58.92 61.51 65.80 
 Response inhibition -.53 .44 -2.93 1.87 
 ADI -6.08*** -5.49 -8.28 -3.88 
 R2 .26    
 Intercept 62.59*** 57.01 60.41 64.77 
 Working memory 2.59* 1.20 .22 4.97 
 ADI -3.83** -2.75 -6.59 -1.07 
 R2 .19    
 Intercept 62.54*** 45.90 59.84 65.24 
 Biological sex .25 .10 -4.69 5.19 
 ADI -4.75*** -3.59 -7.38 -2.16 
 R2 .16    
 Intercept 62.54*** 59.62 60.46 64.62 
 Age -2.81** -2.84 -4.78 -.85 
 ADI -4.49*** -3.94 -6.74 -2.23 
 R2 .21    
 Intercept 63.02*** 47.05 60.37 65.69 
 Response inhibition .43 .28 -2.66 3.51 
 Working memory  1.86 1.59 -.47 4.19 
 Biological sex .80 .35 -3.77 5.37 
 Age -1.58 -1.12 -4.37 1.21 
 ADI -5.09*** -3.93 -7.67 -2.52 
 R2 .29    

Note. *p < .05, **p <.01, ***p<.00. Row 1 presents results from robust linear regression with ADI and Color-Word 
Stroop task Inhibition/Switching vs. Word Reading contrast z-scored as predictors. Row 2 presents results from 
robust linear regression with digit span backwards z-scored as predictors. Row 3 presents results from robust linear 
regression with ADI and biological sex dummy coded 0= male, 1=female as predictors. Row 4 presents results from 
robust linear regression with ADI and age z-scored as predictors. Row5 presents results from robust linear 
regression with Color-Word Stroop task Inhibition/Switching vs. Word Reading contrast score, digit span 
backwards, biological sex, age, and ADI as predictors. 
 
Supplemental Analyses on Resource-Maximizing Decision-Making Over Trials 

In order to investigate resource-maximizing decision-making over the course of the 

traditional foraging task, whether or not decisions were resource-maximizing were entered in a 



 

 

binomial mixed-effects model with participant as a random effect and trial number z-scored as a 

predictor. Results showed a significant positive effect of trial number on whether or not 

decisions were resource-maximizing β = .09, SE = .01, z(31926) = 7.29, p < .001, 95% CI [.07, 

.11] in the traditional foraging task (see Supplemental Figure 1A). In order to investigate 

learning over the course of the depleted foraging task, whether or not decisions were resource-

maximizing were entered in a binomial mixed-effects model with participant as a random effect 

and trial number z-scored as a predictor. Results showed no significant effect of trial on whether 

or not decisions were resource-maximizing β = .03, SE = .02, z(15130) = 1.64, p = .101, 95% CI 

[-.01, .06] (see Supplemental Figure 1B). Taken together, these results suggest that when 

foraging in a resource rich environment, individuals learn over time to make decisions that are 

resource-maximizing; however, individuals do not show learning effects when foraging in a 

resource depleted environment. As stated in our main paper, our model does not account for 

individual differences in learning, and these analyses highlight the need for future research to 

investigate the role of learning while individuals forage. 

 

 

 

 

 

 

 

 

 



 

 

Supplemental Figure 1a and 1b.  Resource-Maximizing Decisions Over Trials. 

 

Note. Panel A shows average probabilities assigned to participant choices by the classical model over trials in the 
traditional foraging task. Panel B shows average probabilities assigned to participant choices by the classical model 
over trials in the depleted foraging task. 
 
 
Supplemental Analyses for the Social Norm Foraging Task   

Moral licensing theory suggests that individuals who initially behave morally may incur a 

“moral license” over time that increases their propensity to engage in immoral behavior at a later 

time point (Merritt et al., 2010). That is, individuals can draw on their past good behavior to 

counteract potential worries about present decisions to act immorally. In order to investigate 

whether or not participants experience moral licensing (i.e., are more likely to engage in social 

norm violations later in the task), we split the length of the social norm foraging task into four 

quantiles and calculated our measure of tendency to engage in social norm violation by each 



 

 

quantile. We entered the tendency to engage in social norm violation into a repeated measures 

General Linear Model with quantile as a within-subjects factor and ADI as a continuous 

covariate. Huynh-Feldt corrected p-values were reported to protect against violations of the 

assumption of sphericity.  

Consistent with the moral licensing theory, results showed a significant main effect of 

quantile on tendency to engage in social norm violations F(3, 282) = 47.33, p < .001, ηp2 = 0.335, 

such that participants made more decisions to cross and harvest on Logan’s land later in the task 

(quantile 2 [M = 117.370, SD=75.35]; quantile 3 [M=125.80, SD=75.59]; quantile 4 [M=129.69, 

SD=76.41]) compared to the beginning of the task (quantile 1 [M=50.28, SD=31.19]). There was 

no significant interaction between ADI and quantile F(27, 282) = 1.48, p = 0.062, ηp2 = 0.124 on 

tendency to engage in social norm violations. Taken together, and consistent with the moral 

licensing theory, these results suggest that participants engage in relatively limited social norm 

violations at the beginning of the task, which may provide participants with a “moral license” to 

increase engagement in social norm violations later in the task. 

Alternative Computational Framework  

Computational Framework. In our task, participants saw an overview of the number of 

apples on the trees on their land, which reflected the mean of the distribution from which initial 

tree richness was initialized, and they knew the harvest and travel times. It is, therefore, possible 

that participants in our task used these values to predict the value of exploration, rather than 

relying on estimates of their past return rate. 

To ensure that this possibility would not affect our results, we developed a second 

computational model that was similar to our second model with the difference that, instead of 

comparing rexploit =vexploit /h against the long-run average return rate, we compared it against 



 

 

rexploit =vexploit /(h+d), where vexplore is the expected number of apples obtained by harvesting a 

new tree, h is the harvest time, and d is the travel time. Because participants knew all of these 

parameters, we set vexplore =10 (average initial number of apples given aerial view; vexplore was set 

to 6 in the depleted foraging task), h=3 (known harvest time), and d=6 (known travel time). 

rexploit was calculated in the same way as our main model.  

Experimental Task Key Variables. Percentage of explore or exploit decisions the 

participant made that were adherent to the resource-maximizing predictions, bias, and 

imprecision during traditional and depleted environments were calculated using the same 

approach as noted in the main manuscript. Analyses are presented on 112 subjects unless 

otherwise specified. For analyses on the resource-decision-making parameters, 110 participants 

were included in the traditional foraging task and 110 participants were included in the depleted 

foraging task.  

Alternative Model Results 

Traditional Foraging Task 

To examine the effect of real-world levels of concentrated disadvantage on foraging 

behavior, percentage of decisions that were resource-maximizing according to the alternative 

computational framework in a generally resource-rich environment were entered in a robust 

linear regression with ADI as a continuous predictor. A robust linear regression was used 

because after a linear regression was conducted, diagnostic plots of Cook’s distance identified 7 

influential points. Consistent with the model from the main text, results showed a significant 

effect of ADI on percentage of resource-maximizing decisions R2 = .07, b = -1.41, t(110) = -

3.00, p = .003, 95% CI [-2.35, -.48], suggesting that individuals who experience higher levels of 



 

 

concentrated disadvantage make fewer resource-maximizing decisions when foraging in a 

generally resource-rich environment. 

Depleted Foraging Task 

 To examine the effect of real-world experience of concentrated disadvantage on foraging 

behavior, percentage of decisions that were resource-maximizing according to the alternative 

computational framework in a generally resource-depleted environment were entered in a robust 

linear regression with ADI as a continuous predictor. Robust regression was used because 

Cook’s distance measures of percentage of decisions that were resource-maximizing in a 

generally resource-depleted environment entered in a linear regression with ADI as a continuous 

predictor identified 4 influential points. Consistent with the model from the main text, results 

showed a significant effect of ADI on percentage of resource-maximizing decisions R2= .09, b = 

-1.49, t(110) = -3.49, p < .001, 95% CI [-2.33, -.64], suggesting that individuals who experience 

higher levels of concentrated disadvantage make fewer resource-maximizing decisions when 

foraging in a generally resource-depleted environment.  

Resource Decision-Making Parameters 

 Bias. Consistent with the model in the main text, results showed no relationship between 

ADI and bias parameters in the resource-rich environment, r(101) = .04, p = .69, 95% CI [-.15, 

.23] or in the resource-depleted environment, r(94) = .18, p = .08, 95% CI [-.02, .37].  

Imprecision. Consistent with the model in the main text, results showed a significant 

positive relationship between ADI and the imprecision parameter in the resource-rich 

environment, r(101) = .21, p = .035, 95% CI [.02, .39] and a significant positive relationship 

between ADI and the imprecision parameter in the resource-depleted environment, r(94) = 

.21, p = .041, 95% CI [.01, .39]. 



 

 

References 

Constantino, S., Dalrymple, J., Gilbert, R. W., Varanese, S., Di Rocco, A., & Daw, N. D. (2017). 

A Neural Mechanism for the Opportunity Cost of Time. bioRxiv, 173443. 

https://doi.org/10.1101/173443  

Constantino, S., & Daw, N. D. (2015). Learning the opportunity cost of time in a patch-foraging 

task. Cognitive, affective & behavioral neuroscience, 15(4), 837-853. 

https://doi.org/10.3758/s13415-015-0350-y  

Hutchinson, J. M. C., Wilke, A., & Todd, P. M. (2008). Patch leaving in humans: can a 

generalist adapt its rules to dispersal of items across patches? Animal Behaviour, 75(4), 

1331-1349. https://doi.org/https://doi.org/10.1016/j.anbehav.2007.09.006  

Lenow, J., Constantino, S., Daw, N. D., & Phelps, E. A. (2017). Chronic and acute stress 

promote overexploitation in decision making. The Journal of Neuroscience, 37(23), 

5671-5689.  

Merritt, A. C., Effron, D. A., & Monin, B. (2010). Moral self-licensing: When being good frees 

us to be bad. Social and Personality Psychology Compass, 4(5), 344-357. 

https://doi.org/10.1111/j.1751-9004.2010.00263.x  

Wolfe, J. M. (2013). When is it time to move to the next raspberry bush? Foraging rules in 

human visual search. Journal of Vision, 13(3), 10. https://doi.org/10.1167/13.3.10  

Zhang, J., Gong, X., Fougnie, D., & Wolfe, J. M. (2015). Using the past to anticipate the future 

in human foraging behavior. Vision Research, 111, 66-74. 

https://doi.org/https://doi.org/10.1016/j.visres.2015.04.003  

 

 


